AD  Vol.1 No.2 , October 2013
Deposition of Transparent, Hydrophobic TiO2 Film for the Protection of Outdoor and Marine Cultural Heritage Assets
Abstract: In this work we present two new methods to obtain TiO2 transparent coverage and to impart superhydro- phobicity to stones and ceramics surface of monuments. The first method, adapted for small artifacts eas- ily transportable in restoration laboratory, consists of a simple evaporation of Ti directly on ceramic sur- face in a controlled oxygen atmosphere. The second method consents the coverage of large surface di- rectly in situ. The TiO2 is evaporated on a salt surface with desired dimensions and then deposited on ceramic surfaces. In both cases the dioxide layers are transparent, don’t damage the ceramic surfaces and are easily removable. In fact, the dioxide layer can be removed simply by 30 minutes of laser ablation process.
Cite this paper: Stranges, F. , Barberio, M. , Barone, P. , Abenante, A. , Leuzzi, A. , Sapia, P. , Xu, F. and Bonanno, A. (2013) Deposition of Transparent, Hydrophobic TiO2 Film for the Protection of Outdoor and Marine Cultural Heritage Assets. Archaeological Discovery, 1, 32-36. doi: 10.4236/ad.2013.12003.

[1]   Chen, W., Fadeev, A. Y., Hsieh, M. C., Oner, D., Youngblood, J., & McCarty, T. J. (1999). Ultrahydrophobic and ultralyophobic surfaces:? Some comments and examples. Langmuir, 15, 3395-3399.

[2]   Coulson, S. R., Woodward, I., Badyal, J. P. S., Brewer, S. A., & Willis, C. J. (2000). Super-repellent composite fluoropolymer surfaces. The Journal of Physical Chemistry B, 104, 8836-8840.

[3]   Gao, L., & McCarthy, T. J. (2006). A perfectly hydrophobic surface (θA/θR = 180?/180?). Journal of the American Chemical Society, 128, 9052-9053.

[4]   Gao, L., & McCarthy, T. J. (2006). The “lotus effect” explained:? Two reasons why two length scales of topography are important. Langmuir, 22, 2966-2967.

[5]   Gattuso, C., Renzelli, D., Barone, P., Pingitore, V., & Oliva, A. (2012). Sar and Maad TL Dating of “Caroselli” from three sites in Calabria, South Italy. Mediterranean Archeology and Archeometry, 12, 43-54.

[6]   Hikita, M., Tanaka, K., Nakamura, T., Kajiyama, T., & Takahara, A. (2005). Super-liquid-repellent surfaces prepared by colloidal silica nanoparticles covered with fluoroalkyl groups. Langmuir, 21, 7299-7302.

[7]   Liu, G., Zhang, X., Xu, Y., Niu, X., Zheng, L., & Ding, X. (2005). The preparation of Zn2+-doped TiO2 nanoparticles by sol-gel and solid phase reaction methods respectively and their photocatalytic activities. Chemosphere, 59, 1367-1371.

[8]   Mahltig, B., & Bottcher, H. (2003). Modified silica sol coatings for water-repellent textiles. Journal of Sol-Gel Science and Technology, 27, 43-52.

[9]   Manoudis, P. N., Karapanagiotis, I., Tsakalof, A., Zuburtikudis, I., Kolinekeova, B., & Panayiotou, C. (2009). Superhydrophobic films for the protection of outdoor cultural heritage assets. Applied Physics A, 97, 351-360.

[10]   Manoudis, P. N., Karapanagiotis, I., Tsakalof, A., Zuburtikudis, I., & Panayiotou, C. (2008). Superhydrophobic composite films produced on various substrates. Langmuir, 24, 11225-11232.

[11]   Naeem, K., & Ouyang, F. (2010). Preparation of Fe3+-doped TiO2 nanoparticles and its photocatalytic activity under UV light. Physica B, 221, 221-226.

[12]   NIST XPS Database (2012). NIST X-ray photoelectron spectroscopy database.

[13]   Oner, D., & McCarty, T. J. (2000). Ultrahydrophobic surfaces. Effects of topography length scales on wettability. Langmuir, 16, 7777-7782.

[14]   Shirtcliffe, N. J., McHale, G., Newton, M. I., & Perry, C. C. (2003). Intrinsically superhydrophobic organosilica sol-gel foams. Langmuir, 19, 5626-5631.

[15]   Stranges, F., Barberio, M., Barone, P., Pingitore, V., Xu, F., & Bonanno, A. (2013). Laser ablation of silver artifacts in vacuum: Solution to silver tarnishing problem. Journal of Earth Science and Engineering, in Press.

[16]   Tserepi, A. D., Vlachopoulu, M. E., & Gogolides, E. (2006). Nanotexturing of poly(dimethylsiloxane) in plasmas for creating robust super-hydrophobic surfaces. Nanotechnology, 17, 3977.

[17]   Zorba, V., Stratakis, E., Barberoglou, M., Spanakis, E., Tzanetakis, P., Anastasiadis, S. H., & Fotakis, C. (2008). Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf. Advanced Materials, 20, 4049-4054.