Least Action Trajectory in Neural Networks

Show more

References

[1] L. Zhao, Y.-C. Lai, K. Park and N. Ye, “Onset of Traffic Congestion in Complex Networks,” Physical Review E, Vol. 71, No. 2, 2005.
http://dx.doi.org/10.1103/PhysRevE.71.026125

[2] B. Tadic, S. Thurner and G. J. Rodgers, “Traffic on Complex Networks: Towards Understanding Global Statistical Properties from Microscopic Density Fluctuations,” Physical Review E, Vol. 69, No. 3, 2004.

[3] G. Yan, T. Zhou, B. Hu, Z.-Q. Fu and B.-H. Wang, “Efficient Routing on Complex Networks,” Physical Review E, Vol. 73, No. 4, 2006.
http://dx.doi.org/10.1103/PhysRevE.73.046108

[4] C. Daganzo, “The Cell Transmission Model, Part 2: Network Traffic,” Transportation Research Part B: Methodological, Vol. 29, No. 2, 1995, pp. 79-93.
http://dx.doi.org/10.1016/0191-2615(94)00022-R

[5] S. Allesina and M. Pascual, “Network Structure, PredatorPrey Modules, and Stability in Large Food Webs,” Theoretical Ecology, Vol. 1, No. 1, 2008.
http://dx.doi.org/10.1007/s12080-007-0007-8

[6] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii and U. Alon, “Network Motifs: Simple Building Blocks of Complex Networks,” Science, Vol. 298, No. 5594, 2002, pp. 824-827.
http://dx.doi.org/10.1126/science.298.5594.824

[7] S. Strogatz, “Exploring Complex Networks,” Nature, Vol. 410, 2001, pp. 268-276.
http://dx.doi.org/10.1038/35065725

[8] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez and D.-U. Hwang, “Complex Networks: Structure and Dynamics,” Vol. 424, No. 4-5, 2006, pp. 175-308.
http://dx.doi.org/10.1016/j.physrep.2005.10.009

[9] L. S. Schulman, “Brownian Motion and the Wiener Integral; Kac's Proof,” Techniques and Applications of Path Integration, John Wiley & Sons Inc., Hoboken, 1981, pp. 53-64.

[10] M. Chaichian and A. Demichev, “Wiener’s Treatment of Brownian Motion: Wiener Path Integrals,” Path Integrals in Physics: Stochastic Processes and Quantum Mechanics, Vol. 1, IOP Publishing, Bristol, 2001, pp. 22-38.

[11] R. Bernstein and S. Bernstein, “Biology,” Wm. C. Publishers, Dubuque, 1996.

[12] P. Raven and G. Johnson, “Biology,” 6th Edition, Mc-Graw-Hill Companies, New York, 2002.

[13] N. Campbell, J. Reece and L. Mitchell, “Biology,” 5th Edition, Benjamin Cummings, San Francisco, 1999.

[14] M. D. Odom and R. Sharda, “A Neural Network Model for Bankruptcy Prediction,” Neural Networks, 1990 IJCNN International Joint Conference on, Vol. 2, 1990, pp. 163- 168. http://dx.doi.org/10.1109/IJCNN.1990.137710

[15] A. Grabowski, “Interpersonal Interactiona and Human Dynamics in a Large Social Network,” Physical A, Vol. 385, pp. 363-369.

[16] D. J. Watts and S. H. Strogatz, “Col-lective Dynamics of ‘Small-World’ Networks,” Nature, Vol. 393, 1998, pp. 440-442. http://dx.doi.org/10.1038/30918

[17] Z. C. Lou, Y. H. Lai, L. L. Chen, X. Zhou, Z. Dai and X. Y. Zou, “Identification of Human Protein Complexes from Local Sub-Graphs of Protein-Protein Interaction Network Based on Random Forest with Topological Structure Features,” Analytica Chimica Acta, Vol. 718, 2012, pp. 32-41. http://dx.doi.org/10.1016/j.aca.2011.12.069

[18] A. Sharma, S. Costantini and G. Colonna, “The Protein- Protein Interaction Network of the Human Sirtuin Family,” Biochemica et Biophysica Acta. Article in Press.

[19] A. L. Barabasi and R. Albert, “Emergence of Scaling in Random Networks,” Science, Vol. 286, No. 5439, 1999, pp. 509-512.
http://dx.doi.org/10.1126/science.286.5439.509

[20] G. J. Ortega, R. G. Sola and J. Pastor, “Complex Network Analysis of Human ECoG Data,” Neuroscience Letters, Vol. 447, 2008, pp. 129-133.
http://dx.doi.org/10.1016/j.neulet.2008.09.080

[21] S. Thornton and J. Marion, “Classical Dynamics of Particles and Systems,” Brooks/Cole, Thomson Learning, Belmont, 2004.

[22] N. Mordant, J. Delour, E. Leveque, A. Arneodo and J. F. Pinton, “Long Time Correlations in Lagrangian Dynamics: A Key toIntermittency in Turbulence,” Phys. Rev. Lett., Vol. 89, No. 254502, 2002.
http://dx.doi.org/10.1103/PhysRevLett.89.254502

[23] N. Mordant, E. Leveque and J. F. Pinton, “Experimental and Numerical Study of the Lagrangian Dynamics of High Reynolds Turbulence,” New Journal of Physics, Vol. 6, No. 116, 2004.

[24] N. De Marco Garcia and T. Jessell, “Early Motor Neuron Pool Identity and Muscle Nerve Trajectory Defined by Postmitotic Restrictions in Nkx6.1 Activity,” Neuron, Vol. 57, No. 2, 2008.