[1] J. Hardt and K. Gorgen, “Multiple Imputation Using ICE: A Simulation Study on a Binary Response,” 6th German Stata User Group Meeting, Berlin, 2008.
http://www.stata.com/meeting/germany08/abstracts.html
[2] J. W. Graham, S. M. Hofer and A. M. Piccinin, “Analysis with Missing Data in Drug Prevention Research,” NIDA Research Monography, Vol. 142, 1994, pp. 13-63.
[3] S. van Buuren, “Multiple Imputation of Discrete and Continuous Data by Fully Conditional Specification,” Statistical Methods in Medical Research, Vol. 16 No. 3, 2007, pp. 219-242.
http://dx.doi.org/10.1177/0962280206074463
[4] G. Papastenafou and M. Wiedenbeck, “Singulare und Multiple Imputation Fehlender Einkommenswerte. Ein Empirischer Vergleich,” ZUMA Nachrichten, Vol. 43, 1998, pp. 73-89.
[5] G. J. van der Heijden, A. R. Donders, T. Stijnen and K. G. Moons, “Imputation of Missing Values Is Superior to Complete Case Analysis and the Missing-Indicator Method in Multivariable Diagnostic Research: A Clinical Example,” Journal of Clinical Epidemiology, Vol. 59, No. 10, 2006, pp. 1102-1109. http://dx.doi.org/10.1016/j.jclinepi.2006.01.015
[6] D. B. Rubin, “Multiple Imputation for Nonresponse in Surveys,” Wiley & Sons, New York, 1987.
http://dx.doi.org/10.1002/9780470316696
[7] X. L. Meng, “Multiple-Imputation Inferences with uncongenial Sources of Input,” Statistical Science, Vol. 9, No. 4, 1994, pp. 538-573.
[8] P. S. Albert, “Imputation Approaches for Estimating Diagnostic Accuracy for Multiple Tests from Partially Verified Designs,” Biometrics, Vol. 63, No. 3, 2007, pp. 947957.
http://dx.doi.org/10.1111/j.1541-0420.2006.00734.x
[9] S. A. Barnes, S. R. Lindborg and J. W. Seaman Jr., “Multiple Imputation Techniques in Small Sample Clinical Trials,” Statistics in Medicine, Vol. 25, No. 2, 2006, pp. 233-245.
http://dx.doi.org/10.1002/sim.2231
[10] O. Harel and X. H. Zhou, “Multiple Imputation: Review of Theory, Implementation and Software,” Statistics in Medicine, Vol. 26, No. 16, 2007, pp. 3057-3077. http://dx.doi.org/10.1002/sim.2787
[11] D. B. Rubin, “Multiple Imputations after 18 plus Years,” Journal of the American Statistical Association, Vol. 91, No. 434, 1996, pp. 473-489. http://dx.doi.org/10.1080/01621459.1996.10476908
[12] A. R. Donders, G. J. van der Heijden, T. Stijnen and K. G. Moons, “Review: A Gentle Introduction to Imputation of Missing Values,” Journal of Clinical Epidemiology, Vol. 59, No. 10, 2006, pp. 1087-1091. http://dx.doi.org/10.1016/j.jclinepi.2006.01.014
[13] J. L. Schafer and J. W. Graham, “Missing Data: Our View of the State of the Art,” Psychological Methods, Vol. 7, No. 2, 2002, pp. 147-177. http://dx.doi.org/10.1037/1082-989X.7.2.147
[14] C. Bono, L. D. Ried, C. Kimberlin and B. Vogel, “Missing Data on the Center for Epidemiologic Studies Depression Scale: A Comparison of 4 Imputation Techniques,” Research in Social and Administrative Pharmacy, Vol. 3, No. 1, 2007, pp. 1-27. http://dx.doi.org/10.1016/j.sapharm.2006.04.001
[15] F. M. Shrive, H. Stuart, H. Quan and W. A. Ghali, “Dealing with Missing Data in a MultiQuestion Depression Scale: A Comparison of Imputation Methods,” BMC Medical Research Methodology, Vol. 6, No. 57, 2006. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17166270 http://dx.doi.org/10.1186/1471-2288-6-57
[16] N. J. Horton and K. P. Kleinman, “Much Ado about Nothing: A Comparison of Missing Data Methods and Software to Fit Incomplete Data Regression Models,” American Statistician, Vol. 61, No. 1, 2007, pp. 79-90. http://dx.doi.org/10.1198/000313007X172556
[17] R. J. Little, M. Yosef, K. C. Cain, B. Nan and S. D. Harlow, “A Hot-Deck Multiple Imputation Procedure for Gaps in Longitudinal Data on Recurrent Events,” Statistics in Medicine, Vol. 27, No. 1, 2008, pp. 103-120. http://dx.doi.org/10.1002/sim.2939
[18] J. Siddique and T. R. Belin, “Multiple Imputation Using an Iterative Hot-Deck with Distance-Based Donor Selection,” Statistics in Medicine, Vol. 27, No. 1, 2008, pp. 83102.
http://dx.doi.org/10.1002/sim.3001
[19] P. Royston, “Multiple Imputation of Missing Data: Update,” Stata Journal, Vol. 5, No. 4, 2005, pp. 188-201.
[20] P. Royston, “Multiple Imputation of Missing Data,” Stata Journal, Vol. 4, No. 3, 2004, pp. 227-241.
[21] J. W. Graham, A. E. Olchowski and T. D. Gilreath, “How Many Imputations Are Really Needed? Some Practical Clarifications of Multiple Imputation Theory,” Prevention Science, Vol. 8, No. 3, 2007, pp. 206-213. http://dx.doi.org/10.1007/s11121-007-0070-9
[22] A. Marshall, D. G. Altman, R. L. Holder and P. Royston, “Combining Estimates of Interest in Prognostic Modelling Studies after Multiple Imputation: Current Practice and Guidelines,” BMC Medical Research Methodology, Vol. 9, No. 57, 2009. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21194416 http://dx.doi.org/10.1186/1471-2288-9-57
[23] J. Hardt, M. Herke and R. Leonhart, “Auxiliary Variables in Multiple Imputation in Regression with Missing X: A Warning against Including Too Many in Small Sample Research,” BMC Medical Research Methodology, Vol. 12, No. 184, 2012.
http://www.biomedcentral.com/1471-2288/12/184
http://dx.doi.org/10.1186/1471-2288-12-184
[24] G. Ambler, R. Z. Omar and P. Royston, “A Comparison of Imputation Techniques for Handling Missing Predictor Values in a Risk Model with a Binary Outcome,” Statistical Methods in Medical Research, Vol. 16, No. 3, 2007, pp. 277-298. http://dx.doi.org/10.1177/0962280206074466
[25] P. Royston, “Multiple Imputation of Missing Data: Update of Ice,” Stata Journal, Vol. 5, No. 4, 2005, pp. 527536.
[26] K. Groothuis-Oudshoorn and S. van Buuren, “Mice: Multivariate Imputation by Chained Equations in R,” Journal of Statistical Software, Vol. 45, No. 3, 2011. http://www.jstatsoft.org/v45/i03
[27] S. van Buuren, H. C. Boshuizen and D. L. Knook, “Multiple Imputation of Missing Blood Pressure Covariates in Survival Analysis,” Statistics in Medicine, Vol. 18, No. 6, 1999, pp. 681-694. http://dx.doi.org/10.1002/(SICI)1097-0258(19990330)18:6<681::AID-SIM71>3.0.CO;2-R
[28] A. Gelman, G. King and C. Liu, “Not Asked and Not Answered: Multiple Imputation for Multiple Surveys,” Journal of the American Statistical Association, Vol. 93, No. 443, 1998, pp. 846-855. http://dx.doi.org/10.1080/01621459.1998.10473737
[29] S. R. Seaman, J. W. Bartlett and I. R. White, “Multiple Imputation of Missing Covariates with Non-Linear Effects and Interactions: An Evaluation of Statistical Methods,” BMC Medical Research Methodology, Vol. 12, No. 46, 2012. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=22489953 http://dx.doi.org/10.1186/1471-2288-12-46
[30] S. van Buuren, “Flexible Imputation of Missing Data,” CRC Press (Chapman & Hall), Boca Raton, 2012. http://dx.doi.org/10.1201/b11826
[31] P. Royston, “Multiple Imputation of Missing Data: Update,” Stata Journal, Vol. 5, No. 2, pp. 188-201.
[32] J. Hardt, U. T. Egle and J. G. Johnson, “Suicide Attempts and Retrospective Reports about Parent-Child Relationships: Evidence for the Affectionless Control Hypothesis,” GMS—Psycho-Social-Medicine, 2007. http://www.egms.de/en/journals/psm/2007-4/psm000044.shtml
[33] U. T. Egle and J. Hardt, “MSBI: Mainz Structured Biographical Interview (MSBI: Mainzer Strukturiertes Biografisches Interview),” In: B. Strauss and J. Schumacher, Eds., Klinische Interviews und Ratingskalen. Diagnostik für Klinik und Praxis (Band 4), 2004, Gottingen, Hogrefe, pp. 261-265.
[34] J. Hardt, U. T. Egle and A. Engfer, “Der Kindheitsfragebogen, ein Instrument zur Beschreibung der Erlebten Kindheitsbeziehungen zu den Eltern,” Zeitschrift fuer Differentielle und Diagnostische Psychololgie, Vol. 24, No. 1, 2003, pp. 33-43. http://dx.doi.org/10.1024//0170-1789.24.1.33
[35] J. Hunzinger, U. T. Egle, G. Vossel and J. Hardt, “Stabilitat und Stimmungsabhangigkeit Retrospektiver Berichte zu Eltern-Kind-Beziehungen,” Zeitschrift fuer Klinische Psychologie und Psychotherapie, Vol. 36, No. 4, 2007, pp. 235-242. http://dx.doi.org/10.1026/1616-3443.36.4.235
[36] C. E. Enders, “Applied Missing Data Analysis,” Guilford, New York, 2010.
[37] A. Marshall, D. G. Altman and R. L. Holder, “Comparison of Imputation Methods for Handling Missing Covariate Data When Fitting a Cox Proportional Hazards Model: A Resampling Study,” BMC Medical Research Methodology, Vol. 10, No. 112, 2010. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21194416 http://dx.doi.org/10.1186/1471-2288-10-112
[38] Y. An, “Smoothed Empirical Likelihood Inference for ROC Curves with Missing Dat,” Open Journal of Statistics, Vol. 2012, No. 2, 2012, pp. 21-27.
http://www.SciRP.org/journal/ojs
http://dx.doi.org/10.4236/ojs.2012.21003