Functional Analysis of Chemometric Data

Show more

References

[1] F. Ferraty and P. View, “The Functional Nonparametric Model and Application to Spectrometric Data,” Computational Statistics, Vol. 17, No. 4, 2002, pp. 545-564.

http://dx.doi.org/10.1007/s001800200126

[2] H. Zhu and D. Cox, “A Functional Generalized Linear Model with Curve Selection in Cervical Pre-Cancer Diagnosis Using Fluorescence Spectroscopy,” IMS Lecture Notes-Monograph Series Optimality: The Third Erich L. Lehmann Symposium, Vol. 57, 2009, pp. 173-189.

http://dx.doi.org/10.1214/09-LNMS5711

[3] C. Preda, G. Saporta and C. Lévéder, “PLS Classification for Functional Data,” Computational Statistics, Vol. 22, No. 2, 2007, pp. 223-235.
http://dx.doi.org/10.1007/s00180-007-0041-4

[4] J. O. Ramsay and B. W. Silverman, “Functional Data Analysis,” 2nd Edition, Springer, Berlin, 2005.

[5] J. O. Ramsay and B. W. Silverman, “Applied Functional Data Analysis,” Springer, Berlin, 2002.

[6] F. Ferraty and P. View, “Nonparametric Functional Data Analysis. Theory and Practice,” Springer, Berlin, 2006.

[7] M. J. Valderrama, A. M. Aguilera and F. A. Ocana, “Predicción Dinámica Mediante Análisis de Datos Funcionales, Hespérides-La Muralla,” 2000.

[8] W. Saeys, B. De Ketelaere and P. Dairus, “Potential Applications of Functional Data Analysis in Chemometrics,” Journal of Chemometrics, Vol. 22, No. 5, 2008, pp. 335344.

http://dx.doi.org/10.1002/cem.1129

[9] C. Jiang and E. B. Martin, “Functional Data Analysis for the Development of a Calibration Model for Near-Infrared,” Computer Aided Chemical Engineering, Vol. 25, 2008, pp. 683-688.

http://dx.doi.org/10.1016/S1570-7946(08)80119-8

[10] C. Preda and G. Saporta, “PLS Regression on a Stochastic Process,” Computational Statistics and Data Analysis, Vol. 48, No. 1, 2005, pp. 149-158.
http://dx.doi.org/10.1016/j.csda.2003.10.003

[11] A. M. Aguilera, M. Escabias, C. Preda and G. Saporta, “Using Basis Expansions for Estimating Functional PLS Regression. Applications with Chemometric Data,” Chemometrics and Intelligent Laboratory Systems, Vol. 104, No. 2, 2010, pp. 289-305.

http://dx.doi.org/10.1016/j.chemolab.2010.09.007

[12] N. Kramer, A.-L. Boulesteix and G. Tutz, “Penalized Partial Least Squares with Applications to B-Spline Transformations and Functional Data,” Chemometrics and Intelligent Laboratory Systems, Vol. 94, No. 1, 2008, pp. 60-69. http://dx.doi.org/10.1016/j.chemolab.2008.06.009

[13] A. M. Aguilera and M. C. Aguilera-Morillo, “Comparative Study of Different B-Spline Approaches for Functional Data,” Mathematical and Computer Modelling, 2013, in press.

http://dx.doi.org/10.1016/j.mcm.2013.04.007

[14] A. M. Aguilera and M. C. Aguilera-Morillo, “Penalized PCA Approaches for B-Spline Expansions of Smooth Functional Data,” Applied Mathematics and Computation, Vol. 219, No. 14, 2013, pp. 7805-7819.
http://dx.doi.org/10.1016/j.amc.2013.02.009

[15] M. C. Aguilera-Morillo, A. M. Aguilera, M. Escabias and M. J. Valderrama, “Penalized Spline Approaches for Functional Logit Regression,” TEST, Vol. 22, No. 2, 2013, pp. 251-277.

http://dx.doi.org/10.1007/s11749-012-0307-1

[16] A. M. Aguilera and M. Escabias, “Solving Multicollinearity in Functional Multinomial Logit Models for Nominal and Ordinal Responses,” In: S. Dabo-Niang and F. Ferraty, Eds., Functional and Operatorial Statistics, Springer, Berlin, 2008.
http://dx.doi.org/10.1007/978-3-7908-2062-1_2

[17] M. Escabias, A. M. Aguilera and M. J. Valderrama, “Principal Component Estimation of Functional Logistic Regression: Discussion of Two Different Approaches,” Journal of Nonparametric Statistics, Vol. 16, No. 3-4, 2004, pp. 365-384.
http://dx.doi.org/10.1080/10485250310001624738

[18] M. Escabias, A. M. Aguilera and M. J. Valderrama, “Functional PLS Logit Regression Model,” Computational Statistics and Data Analysis, Vol. 51, No. 10, 2007, pp. 48914902.

http://dx.doi.org/10.1016/j.csda.2006.08.011

[19] M. Escabias and A. M. Aguilera, “Functional PCA and Base-Line Logit Models with Applications to the Classification of NIR Spectra,” Journal of Classification, 2013, under revision.

[20] F. Ferraty, A. Goia and P. Vieu, “Nonparametric Functional Methods: New Tools for Chemometric Analysis,” In: W. Hardle, M. Yuichi and P. Vieu, Eds., Statistical Methods for Biostatistics and Related Fields, Springer, Berlin, 2007, pp. 245-263.

[21] F. Ferraty and P. View, “Curves Discrimination: A Nonparametric Functional Approach,” Computational Statistics and Data Analysis, Vol. 44, No. 1-2, 2003, pp. 161173. http://dx.doi.org/10.1016/S0167-9473(03)00032-X

[22] M. C. Aguilera-Morillo and A. M. Aguilera, “P-Spline Estimation of Functional Classification Methods for Improving the Quality in the Food Industry,” Communications in Statistics—Simulation and Computation, 2013, in press.

[23] A. Delaigle, P. Hall and N. Bathia, “Componentwise Classification and Clustering of Functional Data,” Biometrika, Vol. 99, No. 2, 2012, pp. 299-313.
http://dx.doi.org/10.1093/biomet/ass003

[24] P. R. Bouzas, N. Ruiz-Fuentes, A. Matilla, A. M. Aguilera and M. J. Valderrama, “A Cox Model for Radioactive Counting Measure: Inference on the Intensity Process,” Chemometrics and Intelligent Laboratory Systems, Vol. 103, No. 2, 2010, pp. 116-121.

http://dx.doi.org/10.1016/j.chemolab.2010.06.002

[25] H. Tan and S. D. Brown, “Multivariate Calibration of Spectral Data Using Dual-Domain Regression Analysis,” Analytica Chimica Acta, Vol. 490, No. 1-2, 2003, pp. 291301.

http://dx.doi.org/10.1016/S0003-2670(03)00351-9

[26] P. J. Brown, T. Fearn and M. Vannucci, “Bayesian Wavelet Regression on Curves with Application to a Spectroscopic Calibration Problem,” Journal of the American Statistical Association, Applications and Case Studies, Vol. 96, No. 454, 2001, pp. 398-408.
http://dx.doi.org/10.1198/016214501753168118

[27] P. T. Reiss and R. T. Ogden, “Functional Principal Component Regression and Functional Partial Least Squares,” Journal of the American Statistical Association, Vol. 102, No. 479, 2007, pp. 984-996.

http://dx.doi.org/10.1198/016214507000000527

[28] F. A. Ocana, A. M. Aguilera and M. Escabias, “Computational Considerations in Functional Principal Component Analysis,” Computational Statistics, Vol. 22, No. 3, 2007, pp. 449-465.

http://dx.doi.org/10.1007/s00180-007-0051-2