Higher Genus Characters for Vertex Operator Superalgebras on Sewn Riemann Surfaces

Show more

References

[1] M. P. Tuite and A. Zuevsky, “The Szego Kernel on a Sewn Riemann Surface,” Communications in Mathematical Physics, Vol. 306, No. 3, 2011, pp. 617-645.

[2] M. P. Tuite and A. Zuevsky, “Genus Two Partition and Correlation Functions for Fermionic Vertex Operator Superalgebras I,” Communications in Mathematical Physics, Vol. 306, No. 2, 2011, pp. 419-447.
http://dx.doi.org/10.1007/s00220-011-1258-1

[3] M. P. Tuite and A. Zuevsky, “A Generalized Vertex Operator Algebra for Heisenberg Intertwiners,” Journal of Pure and Applied Algebra, Vol. 216, No. 6, 2012, pp. 1253-1492.

http://dx.doi.org/10.1016/j.jpaa.2011.10.025

[4] M. P. Tuite and A. Zuevsky, “Genus Two Partition and Correlation Functions for Fermionic Vertex Operator Superalgebras II,” to Appear, 2013.

[5] M. P. Tuite and A. Zuevsky, “The Bosonic Vertex Operator Algebra on a Genus g Riemann Surface,” RIMS Kokyuroko, Vol. 1756, No. 9, 2011, pp. 81-93.

[6] R. E. Borcherds, “Vertex Algebras, Kac-Moody Algebras and the Monster,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 83, No. 10, 1986, pp. 3068-3071.
http://dx.doi.org/10.1073/pnas.83.10.3068

[7] C. Dong and J. Lepowsky, “Generalized Vertex Algebras and Relative Vertex Operators,” Birkhauser, Boston, 1993. http://dx.doi.org/10.1007/978-1-4612-0353-7

[8] I. Frenkel, Y. Huang and J. Lepowsky, “On Axiomatic Approaches to Vertex Operator Algebras and Modules,” American Mathematical Society, Providence, Rhode Island, 1993.

[9] I. Frenkel, J. Lepowsky and A. Meurman, “Vertex Operator Algebras and the Monster,” Academic Press, New York, 1988.

[10] V. Kac, “Vertex Operator Algebras for Beginners,” University Lecture Series, AMS, Providence, 1998.

[11] C. Dong, H. Li and G. Mason, “Twisted Representation of Vertex Operator Algebras,” Mathematische Annalen, Vol. 310, No. 3, 1998, pp. 571-600.
http://dx.doi.org/10.1007/s002080050161

[12] C. Dong, H. Li and G. Mason, “Simple Currents and Extensions of Vertex Operator Algebras,” Communications in Mathematical Physics, Vol. 180, No. 3, 1996, pp. 671707.

http://dx.doi.org/10.1007/BF02099628

[13] H. Li, “Symmetric Invariant Bilinear Forms on Vertex Operator Algebras,” Journal of Pure and Applied Algebra, Vol. 96, No. 3, 1994, pp. 279-297.
http://dx.doi.org/10.1016/0022-4049(94)90104-X

[14] N. Scheithauer, “Vertex Algebras, Lie Algebras and Superstrings,” Journal of Algebra, Vol. 200, No. 2, 1998, pp. 363-403. http://dx.doi.org/10.1006/jabr.1997.7235

[15] H. M. Farkas and I. Kra, “Theta Constants, Riemann Surfaces and the Modular Group,” Graduate Studies in Mathematics, AMS, Providence, 2001.

[16] R. C. Gunning, “Lectures on Riemann Surfaces,” Princeton University Press, Princeton, 1966.

[17] A. Yamada, “Precise Variational Formulas for Abelian Differentials,” Kodai Mathematical Journal, Vol. 3, No. 1, 1980, pp. 114-143.
http://dx.doi.org/10.2996/kmj/1138036124

[18] D. Mumford, “Tata Lectures on Theta I and II,’’ Birkhauser, Boston, 1983.

[19] G. Mason, M. P. Tuite and A. Zuevsky, “Torus N-Point Functions for -Graded Vertex Operator Superalgebras and Continuous Fermion Orbifolds,” Communications in Mathematical Physics, Vol. 283, No. 2, 2008, pp. 305342. http://dx.doi.org/10.1007/s00220-008-0510-9

[20] C. Dong, H. Li and G. Mason, “Modular-Invariance of Trace Functions in Orbifold Theory and Generalized Moonshine,” Communications in Mathematical Physics, Vol. 214, No. 1, 2000, pp. 1-56.
http://dx.doi.org/10.1007/s002200000242

[21] J. D. Fay, “Theta Functions on Riemann Surfaces,” Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1973.

[22] J. D. Fay, “Kernel Functions, Analytic Torsion and Moduli Spaces,” American Mathematical Society, Providence, Rhode Island, 1992.

[23] G. Mason and M. P. Tuite, “On Genus Two Riemann Surfaces Formed from Sewn Tori,” Communications in Mathematical Physics, Vol. 270, No. 3, 2007, pp. 587634.

http://dx.doi.org/10.1007/s00220-006-0163-5

[24] Y. Huang, “Two-Dimensional Conformal Geometry and Vertex Operator Algebras,” Birkhauser, Boston, 1997.

[25] A. Matsuo and K. Nagatomo, “Axioms for a Vertex Algebra and the Locality of Quantum Fields,” Mathematical Society of Japan, Hongo, Bunkyo-ku, Tokio, 1999.

[26] G. Mason and M. P. Tuite, “Free Bosonic Vertex Operator Algebras on Genus Two Riemann Surfaces I”, Communications in Mathematical Physics, Vol. 300, No. 3, 2010, pp. 673-713.

http://dx.doi.org/10.1007/s00220-010-1126-4

[27] G. Mason and M. P. Tuite, “Free Bosonic Vertex Operator Algebras on Genus Two Riemann Surfaces II,” arXiv:1111.2264v1.

[28] G. Mason and M. P. Tuite, “Chiral N-Point Functions for Free Boson and Lattice Vertex Operator Algebras,” Communications in Mathematical Physics, Vol. 235, No. 1, 2003, pp. 47-68.

http://dx.doi.org/10.1007/s00220-002-0772-6

[29] Y. Zhu, “Modular Invariance of Characters of Vertex Operator Algebras,” Journal of the American Mathematical Society, Vol. 9, 1996, pp. 237-302.
http://dx.doi.org/10.1090/S0894-0347-96-00182-8

[30] P. di Vecchia, K. Hornfeck, M. Frau, A. Lerda and S. Sciuto, “N-String, G-Loop Vertex for the Fermionic String,” Physics Letter B, Vol. 211, No. 3, 1988, pp. 301307.

http://dx.doi.org/10.1016/0370-2693(88)90907-0

[31] T. Eguchi and H. Ooguri, “Chiral Bosonization on a Riemann Surface,” Physics Letter B, Vol. 187, No. 1-2, 1987, pp. 127-134.
http://dx.doi.org/10.1016/0370-2693(87)90084-0

[32] D. Freidan and S. Shenker, “The Analytic Geometry of Two Dimensional Conformal Field Theory,” Nuclear Physics B, Vol. 281, No. 3-4, 1987, pp. 509-545.

http://dx.doi.org/10.1016/0550-3213(87)90418-4

[33] M. R. Gaberdiel, Ch. A. Keller and R. Volpato, “Genus Two Partition Functions of Chiral Conformal Field Theories,” arXiv:1002.3371, 2010.

[34] M. R. Gaberdiel and R. Volpato, ‘‘Higher Genus Partition Functions of Meromorphic Conformal Field Theories,” Journal of High Energy Physics, Vol. 9, No. 6, 2009, p. 48.

[35] N. Kawamoto, Y. Namikawa, A. Tsuchiya and Y. Yamada, “Geometric Realization of Conformal Field Theory on Riemann Surfaces,” Communications in Mathematical Physics, Vol. 116, No. 2, 1988, pp. 247-308.

[36] F. Pezzella, “g-Loop Vertices for Free Fermions and Bosons,” Physics Letter B, Vol. 220, No. 4, 1989, pp. 544550. http://dx.doi.org/10.1016/0370-2693(89)90784-3

[37] A. K. Raina, “Fay’s Trisecant Identity and Conformal Field Theory,” Communications in Mathematical Physics, Vol. 122, No. 4, 1989, pp. 625-641.
http://dx.doi.org/10.1007/BF01256498

[38] A. Tsuchiya, K. Ueno and Y. Yamada, “Conformal Field Theory on Universal Family of Stable Curves with Gauge Symmetries,” Academic Press, Boston, 1989.

[39] K. Ueno, “Introduction to Conformal Field Theory with Gauge Symmetries,” Geometry and Physics, Lecture Notes in Pure and Applied Mathematics, Dekker, New York, 1997, pp. 603-745.

[40] G. Mason and M. P. Tuite, “Vertex Operators and Modular Forms,” In: K. Kirsten and F. Williams, Eds., A Window into Zeta and Modular Physics, Cambridge University Press, Cambridge, 2010, pp. 183-278.