ABB  Vol.4 No.10 B , October 2013
RNA species whose transcription is totally silent in pre-MBT stage are not mRNA but rRNA and possible involvement of weak bases (ammonium salts and/or amines) in the transcriptional silence of rRNA genes during the pre-MBT stage in Xenopus early embryos
Author(s) Koichiro Shiokawa*
ABSTRACT

In Xenopus laevis embryogenesis, fertilized eggs undergo 12 cycles of synchronous divisions and reach the stage called midblastula transition (MBT). It has long been believed that during the first 12 cycles of cleavage (pre-MBT stage), transcriptional activity of the zygotic nuclei is totally absent. However, heterogeneous mRNA-like RNA is synthesized in pre-MBT stage embryos, and exogenously-injected bacterial CAT genes with SV40 promoter are expressed from the cleavage stage. Nevertheless, the synthesis of rRNA as detected by rRNA-specific2’-O-methylation does not take place in pre-MBT embryos and starts only from the latter half of the MBT stage, corroborating the fact that formation of definitive nucleoli as well as the transcription of microinjected rRNA genes starts only at and after MBT stage. Thus, while mRNA-like RNA synthesis occurs from pre-MBT stage, synthesis of rRNA is controlled in the way that transcription of rRNA genes is totally silent during pre-MBT stage and is initiated only at the latter half of MBT stage. Once initiated, the rate of the synthesis of rRNA is constant throughout later stages on a per-cell basis. We searched substances which are responsible for the transcriptional silence of rRNA genes during the pre-MBT stage. Weak bases such as ammonium ion and amines selectively inhibited rRNA synthesis at the transcriptional level in post-MBT stage embryo cells. Since we found that the level of ammonia extracted from embryos is much higher in pre-MBT embryos than in post-MBT embryos, we suggest that weak bases like ammonium ion could be responsible for the transcriptional silence of rRNA genes by slightly increasing intracellular pH during the pre-MBT.


Cite this paper
Shiokawa, K. (2013) RNA species whose transcription is totally silent in pre-MBT stage are not mRNA but rRNA and possible involvement of weak bases (ammonium salts and/or amines) in the transcriptional silence of rRNA genes during the pre-MBT stage in Xenopus early embryos. Advances in Bioscience and Biotechnology, 4, 21-35. doi: 10.4236/abb.2013.410A3004.
References
[1]   Graham, C.F. and Morgan, R.W. (1966) Changes in the cell cycle during early amphibian development. Developmental Biology, 14, 439-460. http://dx.doi.org/10.1016/0012-1606(66)90024-8

[2]   Heasman, J. (2006) Patterning the early Xenopus embryo. Development, 133, 1205-1217. http://dx.doi.org/10.1242/dev.02304

[3]   Woodland, H.R. (1974) Changes in the polysome content of developing Xenopuslaevis embryos. Developmental Biology, 40, 90-101. http://dx.doi.org/10.1016/0012-1606(74)90111-0

[4]   Richter, J.D., Wasserman, W.J. and Smith, L.D. (1982) The mechanism for increased protein synthesis during Xenopus oocyte maturation. Developmental Biology, 89, 159-167. http://dx.doi.org/10.1016/0012-1606(82)90304-9

[5]   Newport, J. and Kirschner, M. (1982) A major developmental transition in early Xenopus embryos I. Characterization and timing of cellular changes at the midblastula stage. Cell, 30, 675-686. http://dx.doi.org/10.1016/0092-8674(82)90272-0

[6]   Newport, J. and Kirschner, M. (1982) A major developmental transition in early Xenopus embryos. II. Control of the onset of transcription. Cell, 30, 687-696. http://dx.doi.org/10.1016/0092-8674(82)90273-2

[7]   Carter, A.D. and Sible, J.C. (2003) Loss of XChk1 function triggers apoptosis after the midblastula transition in Xenopus embryos. Mechanisms of Development, 120, 315-323. http://dx.doi.org/10.1016/S0925-4773(02)00443-4

[8]   Wroble, B.N. and Sible, J.C. (2005) Chk2/Cds1 protein kinase blocks apoptosis during early development of Xenopuslaevis. Developmental Dynamics, 233, 1359-1365. http://dx.doi.org/10.1002/dvdy.20449

[9]   Minoura, I., Nakamura, H., Tashiro, K. and Shiokawa, K. (1995) Stimulation of circus movement by activin, bFGF and TGF-β2 in isolated animal cap cells of Xenopuslaevis. Mechanisms of Development, 49, 65-69. http://dx.doi.org/10.1016/0925-4773(94)00303-5

[10]   Shiokawa, K., Misumi, Y. and Yamana, K. (1981) Demonstration of rRNA synthesis in pre-gastrular embryos of Xenopuslaevis. Development, Growth and Differentiation, 23, 579-587. http://dx.doi.org/10.1111/j.1440-169X.1981.00579.x

[11]   Shiokawa, K., Tashiro, K., Misumi, Y. and Yamana, K. (1981) Non-coordinated synthesis of RNA’s in pre-gastrular embryos of Xenopuslaevis. Development, Growth and Differentiation, 23, 589-597. http://dx.doi.org/10.1111/j.1440-169X.1981.00589.x

[12]   Nakakura, N., Miura, T., Yamana, K., Ito, A. and Shiokawa, K. (1987) Synthesis of heterogeneous mRNA-like RNA and low-molecular-weight RNA before the midblastula transition in embryos of Xenopuslaevis. Developmental Biology, 123, 421-429. http://dx.doi.org/10.1016/0012-1606(87)90400-3

[13]   Shiokawa, K., Misumi, Y., Tashiro K., Nakakura, N., Yamana, K. and Oh-Uchida, M. (1989) Changes in the patterns of RNA synthesis in early embryogenesis of Xenopuslaevis. Cell Differentiation and Development, 28, 17-25. http://dx.doi.org/10.1016/0922-3371(89)90019-1

[14]   Yasuda, G.K. and Schubiger, G. (1992) Temporal regulation in the early embryo: Is MBT too good to be true? Trends in Genetics, 8, 124-127.

[15]   Shiokawa, K., Kurashima, R. and Shinga, J. (1994) Temporal control of gene expression from endogenous and exogenously-introduced DNAs in early embryogenesis of Xenopuslaevis. The International Journal of Developmental Biology, 38, 249-255.

[16]   Andeol, Y.A. (1994) Early transcription in different animal species: Implicaitonfor transition from maternal to zygotic control in developoment. Roux’s Archives of Developmental Biology, 204, 3-10. http://dx.doi.org/10.1007/BF00744867

[17]   Yang, J., Tan, C., Darken, R.S., Wilson, P.A. and Klein, P.S. (2002) Beta-catenin/Tcf regulated transcription prior to the midblastula transition. Development, 129, 5743-5752. http://dx.doi.org/10.1242/dev.00150

[18]   Etkin, L.D. and Balcells, S. (1985) Transformed Xenopus embryos as a transient expression system to analyze gene expression at the midblastula transition. Developmental Biology, 108, 173-178. http://dx.doi.org/10.1016/0012-1606(85)90019-3

[19]   Shiokawa, K., Yamana, K., Fu, Y., Atsuchi, Y. and Hosokawa, K. (1990) Expression of exogenously introduced bacterial chloramphenicol acetyltransferase gene in Xenopuslaevis embryos before the midblastula transition. Roux’s Archives of Developmental Biology, 198, 322-329. http://dx.doi.org/10.1007/BF00383770

[20]   Nagel, M., Tahinci, E., Symes, K. and Winklbauer, R. (2004) Guidance of mesoderm cell migration in the Xenopus gastrula requires PDGF signaling. Development, 131, 2727-2736. http://dx.doi.org/10.1242/dev.01141

[21]   Ninomiya, H., Elinson, R.P. and Winklbauer, R. (2004) Antero-posterior tissue polarity links mesoderm convergent extension to axial patterning. Nature, 430, 364-367. http://dx.doi.org/10.1038/nature02620

[22]   Shook, D., Majer, C. and Keller, R. (2004) Pattern and morphogenesis of presumptive superficial mesoderm in Two closely related species, Xenopuslaevis and Xenopustropicalis. Developmental Biology, 270, 163-185. http://dx.doi.org/10.1016/j.ydbio.2004.02.021

[23]   Gurdon, J.B. (1988) A community effect in animal development. Nature, 336, 772-774. http://dx.doi.org/10.1038/336772a0

[24]   Brown, D.D. and Littna, E. (1964) RNA synthesis during the development of Xenopuslaevis, the African clawed toad. Journal of Molecular Biology, 8, 669-687. http://dx.doi.org/10.1016/S0022-2836(64)80116-9

[25]   Brown, D.D. and Littna, E. (1966) Synthesis and accumulation of DNA-like RNA during embryogenesis of Xenopuslaevis. Journal of Molecular Biology, 20, 81-94. http://dx.doi.org/10.1016/0022-2836(66)90119-7

[26]   Gurdon, J.B. and Brown, D.D. (1965) Cytoplasmic regulation of RNA synthesis and nucleolar formation in developing embryos of Xenopuslaevis. Journal of Molecular Biology, 12, 27-35. http://dx.doi.org/10.1016/S0022-2836(65)80279-0

[27]   Shiokawa, K. and Yamana, K. (1965) Demonstration of “polyphosphate” and its possible role in RNA synthesis during early development of Rana japonica embryos. Experimental Cell Research, 38, 180-186. http://dx.doi.org/10.1016/0014-4827(65)90439-8

[28]   Shiokawa, K. and Yamana, K. (1967) Pattern of RNA synthesis in isolated cells of Xenopuslaevis embryos. Developmental Biology, 16, 368-388.

[29]   Shiokawa, K., Nada, O. and Yamana, K. (1967) Synthesis of RNA in isolated cells from Xenopuslaevis embryos. Nature, 213, 1027-1027. http://dx.doi.org/10.1038/2131027a0

[30]   Brown, D.D. and Dawid, I.B. (1968). Specific gene amplification in oocytes. Nature, 160, 272-280.

[31]   Tashiro, K., Shiokawa, K., Yamana, K. and Sakaki, Y. (1986) Structural analysis of ribosomal DNA homologues in nucleolus-less mutant Xenopuslaevis. Gene, 44, 299-306. http://dx.doi.org/10.1016/0378-1119(86)90194-0

[32]   Steele, R.E., Thomas, P.S. and Reeder, R.H. (1984) Anucleolate frog embryos contain ribosomal DNA sequences and a nucleolar antigen. Developmental Biology, 102, 409-416. http://dx.doi.org/10.1016/0012-1606(84)90205-7

[33]   Kai, M., Kaito, C., Fukamachi, H., Higo, T., Takayama, E., Hara, H., Ohya, Y., Igarashi, K. and Shiokawa, K. (2003) Overexpression of S-adenosylmethionine decarboxylase (SAMDC) in Xenopus embryos activates maternal program of apoptosis as a “fail-safe” mechanism of early embryogenesis. Cell Research, 13, 147-158. http://dx.doi.org/10.1038/sj.cr.7290159

[34]   Shibata, M., Shing, J., Yasuhiko, Y., Kai, M., Miura, K., Shimogori, T., Kashiwagi, K., Igarashi, K. and Shiokawa, K. (1998) Overexpression of S-adenosylmethionine decarboxylase (SAMDC) in early Xenopus embryos induces cell dissociation and inhibits transition from the blastula to gastrula stage. The International Journal of Developmental Biology, 42, 675-686.

[35]   Kai, M., Higo, T., Yokoska, J., Kaito, C., Kajita, E., Fukamachi, H., Takayama, E., Igarashi, K. and Shiokawa, K. (2000) Overexpression of S-adenosylmethionine decarboxylase (SAMDC) activates the maternal program of apoptosis shortly after MBT in Xenopus embryos. The International Journal of Developmental Biology, 44, 507-510.

[36]   Hensey, C. and Gautier, J. (1997) A developmental timer that regulates apoptosis at the onset of gastrulation. Mechanisms of Development, 69, 183-195. http://dx.doi.org/10.1016/S0925-4773(97)00191-3

[37]   Sible, J.C., Anderson, J.A., Lewelly, A.L. and Maller, J.L. (1997) Zygotic transcription is required to block a maternal program of apoptosis in Xenopus Embryos. Developmental Biology, 189, 335-346. http://dx.doi.org/10.1006/dbio.1997.8683

[38]   Anderson, J.A., Lewellyn, A.L. and Maller, J.L. (1997) Ionizing radiation induces apoptosis and elevates cyclin A1-Cdk2 activity before but not after the midblastula transition in Xenopus. Molecular Biology of the Cell, 8, 1195-1206. http://dx.doi.org/10.1091/mbc.8.7.1195

[39]   Stack, J.H. and Newport, J.W. (1997) Developmentally regulated activation of apoptosis early in Xenopus gastrulation results in cyclin A degradation during interphase of the cell cycle. Development, 124, 3185-3195.

[40]   Kaito, C., Kai, M., Higo, T., Takayama, E., Fukamachi, H., Sekimizu, K. and Shiokawa, K. (2001) Activation of the maternally preset program of apoptosis by microinjection of 5-aza-2’-deoxycytidine and 5-methyl-2’-deoxycytidine-5’-triphosphate in Xenopus laevis embryos. Development, Growth & Differentiation, 43, 383-390. http://dx.doi.org/10.1046/j.1440-169x.2001.00579.x

[41]   Shiokawa, K., Kai, M., Higo, T., Kaito, C., Fukamachi, H., Yaoita, Y. and Igarashi, K. (2000) Maternal program of apoptosis activated shortly after midblastula transition by overexpression of S-adenosylmethionine decarboxylase in Xenopus early embryos. Comparative Biochemistry and Physiology Part B, 126, 149-155.

[42]   Shiokawa, K. (2012) Maternally-preset program of apoptosis and caspases involved in execution of the apoptosis at midblastula transition (MBT) but not before in Xenopus laevis embryogenesis. Advances in Bioscience and Biotechnology, 3, 751-769. http://dx.doi.org/10.4236/abb.2012.326096

[43]   Newmeyer, D.D., Farschon, D.M. and Reed, J.C. (1994) Cell-free apoptosis in Xenopus egg extracts: Inhibition by Bcl-2 and requirement for an organelle fraction enriched in mitochondria. Cell, 79, 353-364. http://dx.doi.org/10.1016/0092-8674(94)90203-8

[44]   Busby, S.J. and Reeder, R.H. (1983) Spacer sequences regulate transcription of ribosomal gene plasmids injected into Xenopus embryos. Cell, 34, 989-996. http://dx.doi.org/10.1016/0092-8674(83)90556-1

[45]   Shiokawa, K. and Yamana, K. (1967) Inhibitor of ribosomal RNA synthesis in Xenopus laevis embryos. Developmental Biology, 16, 389-406. http://dx.doi.org/10.1016/0012-1606(67)90049-8

[46]   Laskey, R.A., Gerhart, J.C. and Knowland, J.S. (1973) Inhibitor of ribosomal RNA synthesis in neurula cells by extracts from blastulae of Xenopus laevis. Developmental Biology, 33, 241-248. http://dx.doi.org/10.1016/0012-1606(73)90134-6

[47]   Shiokawa, K., Kawazoe, Y. and Yamana, K. (1985) Demonstration that inhibitor of rRNA synthesis in “charcoal-extracts” of Xenopus embryos is artifactually produced ammonium perchlorate. Developmental Biology, 112, 258-260. http://dx.doi.org/10.1016/0012-1606(85)90141-1

[48]   Shiokawa, K., Kawazoe, Y., Nomura, H., Miura, T., Nakakura, N., Horiuchi, T. and Yamana, K. (1986) Ammonium ion as a possible regulator of the commencement of rRNA synthesis in Xenopus laevis embryogenesis. Developmental Biology, 115, 380-391. http://dx.doi.org/10.1016/0012-1606(86)90257-5

[49]   Shiokawa, K., Kawazoe, Y., Tashiro, K. and Yamana, K. (1986) Effects of various ammonium salts, amines, polyamines, and alpha-methylornithine on rRNA synthesis in neurula cells of Xenopus laevis and Xenopus borealis. Cell Differentiation, 18, 101-108. http://dx.doi.org/10.1016/0045-6039(86)90004-7

[50]   Shiokawa, K., Fu, Y., Kawazoe, Y. and Yamana, K. (1987) Mode of action of ammonia and amine on rRNA synthesis in Xenopus laevis embryonic cells. Development, 100, 513-523.

[51]   Wellauer, P.K. and Dawid, I.B. (1974) Secondary structure maps of ribosomal RNA and DNA: I. Processing of Xenopus laevis ribosomal RNA and structure of single-stranded ribosomal DNA. Journal of Molecular Biology, 89, 379-395. http://dx.doi.org/10.1016/0022-2836(74)90526-9

[52]   Webb, D.J. and Charbonneau, M. (1986) Weak bases inhibit cleavage and embryogenesis in the amphibians, Xenopus (toad) and Pleurodeles (newt), asterias (starfish). Cell Differentiation, 20, 33-44. http://dx.doi.org/10.1016/0045-6039(87)90463-5

[53]   Stith, B.J. and Maller, J.L. (1984) The effect of insulin on intracellular pH and ribosomal protein S6 phosphorylation in oocytes of Xenopus laevis. Developmental Biology, 102, 79-89. http://dx.doi.org/10.1016/0012-1606(84)90176-3

[54]   Nuccitelli, R., Webb, D.J., Lagier, S.T. and Matson, G.B. (1981) 31P NMR reveals increased intracellular pH after fertilization in Xenopus eggs. Proceedings of the National Academy of Sciences of the United States of America, 78, 4421-4425. http://dx.doi.org/10.1073/pnas.78.7.4421

[55]   Lee, S.C. and Steinhardt, R.A. (1981) Observation on intracellular pH during cleavage of eggs of Xenopus laevis. The Journal of Cell Biology, 91, 414-419. http://dx.doi.org/10.1083/jcb.91.2.414

[56]   Wasserman, W.J. and Houle, J.G. (1984) The Xenopus oocytes: A potential role for intracellular pH. Developmental Biology, 101, 436-445.

 
 
Top