[1] Qian, H. (2010) Environment-richness relationships for mammals, birds, reptiles and amphibians at global and regional scales. Ecological Research, 25, 629-637. http://dx.doi.org/10.1007/s11284-010-0695-1
[2] Qian, H. and Ricklefs, R.E. (2012) Disentangling the effects of geographic distance and environmental dissimilarity on global patterns of species turnover. Global Ecology and Biogeography, 21, 341-351. http://dx.doi.org/10.1111/j.1466-8238.2011.00672.x
[3] Jetz, W. and Fine, P. (2012) Global gradients in vertebrate diversity predicted by historical area-productivity dynamics and contemporary environment. PLoS Biology, 10, e1001292. http://dx.doi.org/10.1371/journal.pbio.1001292
[4] Hawkins, B.A., McCain, C.M., Davies, T.J., Buckley, L. B., Anacker, B.L., Cornell, H.V., Damschen, E.I., Grytnes, J.-A., Harrison, S., Holt, R.D., et al. (2012) Different evolutionary histories underlie congruent species richness gradients of birds and mammals. Journal of Biogeography, 39, 825-841. http://dx.doi.org/10.1111/j.1365-2699.2011.02655.x
[5] Legendre, P. (1993) Spatial autocorrelation: Trouble or new paradigm? Ecology, 74, 1659-1673. http://dx.doi.org/10.2307/1939924
[6] Storch, D., Keil, P. and Jetz, W. (2012) Universal species and endemic-area relationships at continental scales. Nature, 488, 79-81. http://dx.doi.org/10.1038/nature11226
[7] Grenyer, R., Orme, C.D.L., Jackson, S.F., Thomas, G.H., Davies, R.G., Davies, T.J., Jones, K.E., Olson, V.A., Ridgely, R.S., Rasmussen, P.C., et al. (2006) Global distribution and conservation of rare and threatened vertebrates. Nature, 444, 93-96. http://dx.doi.org/10.1038/nature05237
[8] Vieira, C., Blmires, D., Diniz-Fiho, J., Bini, L. and Rangel, T. (2008) Autoregressive modelling of species richness in the Brazilian Cerrado. Brazilian Journal of Biology, 68, 233-240. http://dx.doi.org/10.1590/S1519-69842008000200003
[9] Chen, Y. (2013) An autoregressive model for global vertebrate richness rankings: Long-distance dispersers could have stronger spatial structures. Zoological Studies, In Press.
[10] R Development Core Team (2011) R: A language and environment for statistical computing, Vienna, Austria. http://www.R-project.org
[11] Qian, H., Wang, X., Wang, S. and Li, Y. (2007) Environmental determinants of amphibian and reptile species richness in China. Ecography, 30, 471-482.
[12] Griffith, D. and Peres-Neto, P. (2006) Spatial modeling in ecology: The flexibility of eigenfunction spatial analyses. Ecology, 87, 2603-2613. http://dx.doi.org/10.1890/0012-9658(2006)87[2603:SMIETF]2.0.CO;2
[13] Belmaker, J. and Jetz, W. (2011) Cross-scale variation in species richness-environment associations. Global Ecology and Biogeography, 20, 464-474. http://dx.doi.org/10.1111/j.1466-8238.2010.00615.x
[14] Belmaker, J. and Jetz, W. (2012) Regional pools and environmental controls of vertebrate assemblages. American Naturalist, 179, 512-523. http://dx.doi.org/10.1086/664610
[15] Cooper, N., Freckleton, R.P. and Jetz, W. (2011) Phylogenetic conservatism of environmental niches in mammals. Proceedings of the Royal Society B: Biological Sciences, 278, 2384-2391. http://dx.doi.org/10.1098/rspb.2010.2207
[16] Kissling, W.D., Sekercioglu, C.H. and Jetz, W. (2012) Bird dietary guild richness across latitudes, environments and biogeographic regions. Global Ecology and Biogeography, 21, 328-340. http://dx.doi.org/10.1111/j.1466-8238.2011.00679.x
[17] Cosacov, A., Johnson, L., Paiaro, Cocucci, A., Cordoba, F. and Sersic, A. (2012) Precipitation rather than temperature influenced the phylogeography of the endemic shurb Anarthrophyllum desideratum in the Patagonian steppe. Journal of Biogeography, 40, 168-182. http://dx.doi.org/10.1111/j.1365-2699.2012.02776.x
[18] Starzomski, B.M., Parker, R.L. and Srivastava, D.S. (2008) On the relationship between regional and local species richness: A test of saturation theory. Ecology, 89, 1921-1930. http://dx.doi.org/10.1890/07-0418.1
[19] Adler, P. and Levine, J. (2007) Contrasting relationships between precipitation and species richness in space and time. Oikos, 116, 221-232. http://dx.doi.org/10.1111/j.0030-1299.2007.15327.x
[20] Liberal, C.N., de Farias, A.M.I., Meiado, M.V., Filgueiras, B.K.C. and Iannuzzi, L. (2011) How habitat change and rainfall affect dung beetle diversity in Caatinga, a Brazilian semi-arid ecosystem. Journal of Insect Science, 11, 1-11. http://dx.doi.org/10.1673/031.011.11401
[21] Wang, Z., Brown, J., Tang, Z. and Fang, J. (2009) Temperature dependence, spatial scale and tree species diversity in eastern Asia and North America. PNAS, 106, 13388-13392. http://dx.doi.org/10.1073/pnas.0905030106
[22] Yasuhara, M., Hunt, G., Dowsett, H.J., Robinson, M.M., Stoll, D.K. and Marshall, D. (2012) Latitudinal species diversity gradient of marine zooplankton for the last three million years. Ecology Letters, 15, 1174-1179. http://dx.doi.org/10.1111/j.1461-0248.2012.01828.x
[23] Tittensor, D.P., Mora, C., Jetz, W., Lotze, H.K., Ricard, D., Berghe, E. Vanden and Worm, B. (2010) Global patterns and predictors of marine biodiversity across taxa. Nature, 466, 1098-1011. http://dx.doi.org/10.1038/nature09329
[24] Simova, I., Storch, D., Keil, P., Boyle, B., Phillips, O. and Enquist, B. (2011) Global species-energy relationship in forest plots: Role of abundance, temperature and species climatic tolerances. Global Ecology and Biogeography, 20, 842-856. http://dx.doi.org/10.1111/j.1466-8238.2011.00650.x
[25] Brown, J., Gillooly, J., Allen, A., Savage, V. and West, G. (2004) Toward a metabolic theory of ecology. Ecology, 85, 1771-1789. http://dx.doi.org/10.1890/03-9000
[26] Storch, D. (2012) Biodiversity and its energetic and thermal controls. In: Sibly, R., Brown, J., and KordricBrown, A., Eds., Metabolic Ecology: A Scaling Approach, John Wiley & Sons, Ltd., Chichester. http://dx.doi.org/10.1002/9781119968535.ch11
[27] Algar, A., Kerr, J. and Currie, D. (2007) A test of metabolic theory as the mechanism underlying broad-scale species-richness gradients. Global Ecology and Biogeography, 16, 170-178. http://dx.doi.org/10.1111/j.1466-8238.2006.00275.x
[28] Hawkins, B.A., Albuquerque, F.S., Araujo, M.B., Beck, J., Bini, L.M., Cabrero-Sanudo, F.J., Castro-Parga, I., Diniz Filho, J.A.F., Ferrer-Castan, D., Field, R., et al. (2007) A global evaluation of metabolic theory as an explanation for terrestrial species richness gradients. Ecology, 88, 1877-1888. http://dx.doi.org/10.1890/06-1444.1?