Back
 AM  Vol.4 No.10 C , October 2013
Solutions of the Dirac Equation with Gravitational plus Exponential Potential
Abstract: The solutions of the Alhaidari formalism of the Dirac equation for the gravitational plus exponential potential have been presented using the parametric Nikiforov-Uvarov method. The energy eigenvalues and the corresponding unnormalized eigenfunctions are obtained in terms of Laguerre polynomials.
Cite this paper: B. Ita and A. Ikeuba, "Solutions of the Dirac Equation with Gravitational plus Exponential Potential," Applied Mathematics, Vol. 4 No. 10, 2013, pp. 1-6. doi: 10.4236/am.2013.410A3001.
References

[1]   M. K. Bahar and F. Yasuk, “Fermionic Particles with Position-Dependent Mass in the Presence of Inversely Quadratic Yukawa Potential and Tensor Interaction,” Pramana Journal of Physics, Vol. 80, No. 2, 2013, pp. 187-197. http://dx.doi.org/10.1007/s12043-012-0483-2

[2]   A. N. Ikot and E. Maghsoodi, “Relativistic Spin and Pseudospin Symmetries of Inversely Quadratic Yukawa Like plus Mobius Square Potentials Including a Cou lomb-Like Tensor Interaction,” Few-Body Systems, 2013. http://dx.doi.org/10.1007/s00601-013-0701-6

[3]   K. V. Koshelev, “Another Method to Solve Dirac’s One Electron Equation Numerically,” arXiv:
0811.3912v1 [Physics.gen-ph], 2008.

[4]   H. Eleuch and H. Bahlouli, “Analytical Solution to the Dirac Equation in 3 + 1 Space-Time Dimensions,” Ap plied Mathematics and Information Science, Vol. 6, 2012, pp. 153-156.

[5]   H. Nakashima and H. Nakatsuji, “Relativistic Free Com plement Method for Correctly Solving the Dirac Equation with the Applications to Hydrogen Isoelectronic Atoms,” Theoretical Chemistry Account, Vol. 129, No. 3-5, 2011, pp. 567-574. http://dx.doi.org/10.1007/s00214-011-0899-7

[6]   M. Eshghi, “Relativistic Problem by Choosing Spa tially-Dependent Mass Coupled With Tensor Potential,” World Applied Sciences Journal, Vol. 6, No. 3, 2012, pp. 415-420.

[7]   M. Hamzavi, A. A. Rajabi and H. Hassanabi, “Exact Pseudospin Symmetry Solution of the Dirac Equation for Spatially-Dependent Mass Coulomb Potential Including Coulomb-Like Tensor Interaction via Asymptotic Itera tion Method,” Physics Letters A, Vol. 374, No. 42, pp. 4303-4307.
http://dx.doi.org/10.1016/j.physleta.2010.08.065

[8]   M. Eshghi and H. Mehraban, “Eigen Spectra for q-De formed Hyperbolic Scarf Potential Including a Coulomb Like Tensor Interaction,” Journal of Scientific Research, Vol. 3, No. 2, 2011, pp. 239-247.

[9]   H. Akcay and C. Tezcan, “Exact Solutions of the Dirac Equation with Harmonic Oscillator Potential Including a Coulomb-Like Tensor Interaction,” International Journal of Modern Physics C, Vol. 20, No. 6, 2010, pp. 931-940. http://dx.doi.org/10.1142/S0129183109014084

[10]   H. Akcay, “Dirac Equation with Scalar and Vector Quad ratic Potentials and Coulomb-Like Tensor Potential,” Physics Letters A, Vol. 373, No. 6, 2009, pp. 616-620.
http://dx.doi.org/10.1016/j.physleta.2008.12.029

[11]   M. Hamzavi, H. Hassanabadi and A. A. Rajabi, “Ap proximate Pseudospin Solutions of the Dirac Equation with the Eckart Potential Including a Coulomb-Like Ten sor Potential,” International Journal of Theoretical Phys ics, Vol. 50, No. 2, 2011, pp. 454-464. http://dx.doi.org/10.1007/s10773-010-0552-6

[12]   O. Aydogdu and R. Sever, “Exact Pseduspin Symmetric Solution of the Dirac Equation for Pseudoharmonic Po tential in the Presence of Tensor Potential,” Few-Body Systems, vol. 47, No. 3, 2010, pp. 193-200. http://dx.doi.org/10.1007/s00601-010-0085-9

[13]   S. M. Ikhdair and R. Sever, “Approximate Bound State Solutions of Dirac Equation with Hulthen Potential In cluding Coulomb-Like Tensor Potential,” Applied Mathe matics and Communication, Vol. 216, No. 3, 2010, pp. 911-923. http://dx.doi.org/10.1016/j.amc.2010.01.104

[14]   D. Agboola, “Dirac Equation with Spin Symmetry for Modified Poschl-Teller Potential in D Dimensions,” Pramana journal of Physics, Vol. 76, No. 6, 2011, pp. 875-885.

[15]   S. D. Bosanac, “Solution of Dirac Equation for a Step Potential and Klein Paradox,” Journal of Physics A: Ma thematics and Theory, Vol. 40, No. 30, 2007, pp. 8991-9001. http://dx.doi.org/10.1088/1751-8113/40/30/021

[16]   M. Hamzavi and M. Amirfakhrian, “Dirac Equation for a Spherically Pseudoharmonic Oscillatory Ring-Shaped Po tential,” International Journal of Physical Sciences, Vol. 6, No. 15, 2011, pp. 3803-3807.

[17]   C. Berkdemir and Y. F. Cheng, “On the Exact Solutions of the Dirac Equation with a Novel Angle-Dependent Po tential,” Physica Scripta, Vol. 79, No. 3, 2009, pp. 035003-035010.
http://dx.doi.org/10.1088/0031-8949/79/03/035003

[18]   C. Y. Chen, “Exact Solutions of the Dirac Equation with Scalar and Vector Hartmann Potentials,” Physics Letters A, Vol. 339, No. 3-5, 2005, pp. 283-287.
http://dx.doi.org/10.1016/j.physleta.2005.03.031

[19]   F. Zhou, Y. Wu and J. Y. Guo,” Solutions of the Dirac Equation for Makarov Potential with Pseudospin Symme try,” Communications in Theoretical Physics, Vol. 52, No. 5, 2009, pp. 813-816.
http://dx.doi.org/10.1088/0253-6102/52/5/09

[20]   E. Maghsoodi, H. Hassanabadi and S. Zarrinkamar, “Ex act Solutions of the Dirac Equation with Poschl-Teller Double-Ring Shaped Coulomb Potential via the Nikiforov-Uvarov Method,” Chinese Physics B, Vol. 22, No. 3, 2013, pp. 030302-1-030302-5.

[21]   I. O. Akpan, A. D. Antia and A. N. Ikot, “Bound State Solutions of the Klein-Gordon Equation with q-Deformed Equal Scalar and Vector Eckart Potential Using a Newly Improved Approximation Scheme,” High Energy Physics, Vol. 2012, 2012, Article ID: 798209. http://dx.doi.org/10.5402/2012/798209

[22]   M. N. Berberan-Santos, E. N. Bodunov and L. Pogliani, “Classical and Quantum Study of the Motion of a Particle in a Gravitational Field,” Journal of Mathematical Chem istry, Vol. 37, No. 2, 2005, pp. 101-105. http://dx.doi.org/10.1007/s10910-004-1443-y

[23]   K. J. Oyewumi and C. O. Akoshile, “Bound State Solutions of the Dirac-Rosen-Morse Potential with Spin and Pseudospin Symmetry,” European Physics Journal A, Vol. 45, No. 3, 2010, pp. 311-318. http://dx.doi.org/10.1140/epja/i2010-11007-0

[24]   W. A. Yahaya, K. J. Oyewumi, C. O. Akoshile and T. T. Ibrahim, “Bound State Solutions of the Relativistic Dirac Equation with Equal Scalar and Vector Eckart Potential Using Nikiforov-Uvarov Method,” Journal of Vectorial Relativity, Vol. 3, 2010, pp. 27-34.

[25]   A. D. Alhaidari, H. Bahlouli and A. Al-Hasan, “Dirac and Klein-Gordon Equations with Equal Scalar and Vector Potentials,” Physics Letters A, Vol. 349, No. 1-4, 2006, pp. 87-96.
http://dx.doi.org/10.1016/j.physleta.2005.09.008

[26]   C. Berkdemir, A. Berkdemir and R. Sever, “Systematic Approach to the Exact Solution of the Dirac Equation for a Special Form of Woods-Saxon Potential,” Physics A: Mathematics and General, Vol. 39, No. 43, 2006, pp. 13455-13470. http://dx.doi.org/10.1088/0305-4470/39/43/005

[27]   B. I. Ita and A. I. Ikeuba, “Solutions of the Klein-Gordon Equation with Quantum Mechanical Gravitational Poten tial,” Open Journal of Microphysics, Accepted for Publi cation, 2013.

[28]   A. F. Nikiforov and A. B. Uvarov, “Special functions of Mathematical Physics,” Birkhauser, Basle, 1988. http://dx.doi.org/10.1007/978-1-4757-1595-8

[29]   M. Hamzavi and A. A. Rajabi, “Exact S-Wave Solution of the Trigonometric Poschl-Teller Potential,” Interna tional Journal of Quantum Chemistry, Vol. 112, No. 6, 2012, pp. 1592-1597.
http://dx.doi.org/10.1002/qua.23166

[30]   S. M. Ikhdair and R. Sever, “Exact Solution of the Klein Gordon Equation for the PT-Symmetric Generalized Woods Saxon Potential by the Nikiforov-Uvarov Method,” An nalen der Physik, Vol. 16, No. 3, 2007, pp. 218-232.

[31]   N. Candemir, “Pseudospin Symmetry in Trigonometric Poschl-Teller Potential,” International Journal of Modern Physics E, Vol. 21, No. 6, 2010, Article ID: 1250060.

[32]   A. N. Ikot, “Solution of Dirac Equation with Generalized Hylleraas Potential,” Communications in Theoretical Physics, Vol. 59, No. 3, 2013, pp. 268-272. http://dx.doi.org/10.1088/0253-6102/59/3/04

 
 
Top