OJU  Vol.3 No.6 , October 2013
MG289 in Mycoplasma genitalium Enhances Microbial Invasion and Bacterial Persistence in Benign Human Prostate Cells
Abstract: Introduction: Recent studies suggest that infectious organisms may facilitate initiation and metastasis of many human cancers. One infectious organism of interest is Mycoplasma genitalium(Mg), a prevalent organism in humans known to cause sexually transmitted infection, as well as urethritis and prostatitis. Previous studies have demonstrated that benign, non-tumorigenic human prostate cells (BPH-1) chronically exposed to M. genitalium led to the malignant transformation of these cells as demonstrated in in vitro and in vivo models. Based on work from our laboratory, we felt this malignant transformation revolved around a specific M. genitalium’s ABC transporter (MG289) with homology to M. hyorhinis’ ABC transporter, p37. In this study, differences in M. genitalium’s ability to infect and induce a unique proteome conducive to tumoral growth were studied with engineered M. genitalium in which the p37 protein was silent. Materials and Methods: Wild-type M. genitalium (strain 431c, designated as M. genitalium WT) and MG289 deficient M. genitalium mutant (strain 260_3, designated as Mg260_3) were used for this study. We studied the infectivity potential between M. genitalium WT and Mg260_3 upon exposure to BPH-1 cells. Furthermore, we set out to identify a unique proteome in BPH-1 cells exposed to M. genitalium WT that could explain its ability to induce malignant transformation of benign cells. Validation of selected proteomic targets was carried out by Western blot analysis. Results: Both M. genitalium WT and Mg260_3 strains showed somewhat similar growth curve when absorbance at 450nm was matched at day 0. Colony forming units (CFUs) were similar for both strains at the same absorbance. However, the ability to infect BPH-1 cells was greatly reduced in Mg260_3 compared to the M. genitalium WT (p < 0.001). This was evident by infectivity assays and confocal microscopy. Proteomic analysis of BPH-1 cells infected with either M. genitalium WT or Mg260_3 for 8 hr, 24 hr and 6 days demonstrated a considerable shift in protein expression over uninfected BPH-1 cells at each time point. The preponderance of perturbed proteins regulated protein synthesis and protein processing, triggering endoplasmic reticulum stress. Conclusions: In summary, we demonstrate that Mg260_3, which is deficient of the phosphonate ABC transporter substrate-binding protein; MG289 (homologue to M. hyorhinis p37), is less effective in invading and maintaining an intracellular persistence in benign human prostate cells. In addition, deletion of MG289 resulted in altered BPH-1 responses to M. genitalium infection as evidenced by differential proteome profiling of BPH-1 infected cells.
Cite this paper: W. Rizwani, L. Reyes, J. Kim, S. Goodison and C. Rosser, "MG289 in Mycoplasma genitalium Enhances Microbial Invasion and Bacterial Persistence in Benign Human Prostate Cells," Open Journal of Urology, Vol. 3 No. 6, 2013, pp. 232-245. doi: 10.4236/oju.2013.36044.

[1]   J. W. Simecka, J. K. Davis, M. K. Davidson, S. E. Ross, C. T. Stadtlander, H. Kirchhoff, and G. H. Cassell, 1992. “Mycoplasma Diseases of Animals,” In: J. Maniloff, R. N. McElhaney, L. R. Finch and J. B. Baseman, Eds., Mycoplasmas: Molecular Biology and Pathogenesis, American Society for Microbiology, ASM press, Washington, DC, 1992, pp. 391-415.

[2]   L. E. Manhart, K. K. Holmes, J. P. Hughes, L. S. Houston and P. A. Totten, “Mycoplasma Genitalium among Young Adults in the United States: An Emerging Sexually Transmitted Infection,” American Journal of Public Health, Vol. 97, No. 6, 2007, pp. 1118-1125. AJPH.2005.074062

[3]   J. S. Jensen, “Mycoplasma genitalium: The Aetiological Agent of Urethritis and other Sexually Transmitted Diseases,” Journal of the European Academy of Dermatology and Venereology, Vol. 18, No. 1, 2004, pp. 1-11.

[4]   D. H. Martin, “Nongonococcal urethritis: New Views through the Prism of Modern Molecular Microbiology,” Current Infectious Disease Reports, Vol. 102, No. 2, 2008, pp. 128-132.

[5]   J. N. Krieger and D. E. Riley, “Chronic Prostatitis: Charlottesville to Seattle,” The Journal of Urology, Vol. 172, No. 2, 2004, pp. 2557-2560.

[6]   R. Mandar, E. Raukas, S. Turk, P. Korrovits and M. Punab, “Mycoplasmas in Semen of Chronic Prostatitis Patients,” Scandinavian Journal of Urology and Nephrology, Vol. 39, No. 6, 2005, pp. 479-482.

[7]   S. Zhang, S. Tsai and S. C. Lo, “Alteration of Gene Expression Profiles during Mycoplasma-Induced Malignant Cell Transformation,” BMC Cancer, Vol. 6, 2006, p. 116.

[8]   K. Namiki, S. Goodison, S. Porvasnik, R. W. Allan, K. A. Iczkowski, C. Urbanek, L. Reyes, N. Sakamoto and C. J. Rosser, “Persistent Exposure to Mycoplasma Induces Malignant Transformation of Human Prostate Cells,” PloS One, Vol. 4, No. 9, 2009, p. e6872. pone.0006872

[9]   S. H. Feng, S. Tsai, J. Rodriguez and S. C. Lo, “Mycoplasmal Infections Prevent Apoptosis and Induce Malignant Transformation of Interleukin-3-Dependent 32D Hematopoietic Cells,” Molecular and Cellular Biology, Vol. 19, No. 12, 1999, pp. 7995-8002.

[10]   S. Tsai, D. J. Wear, J. W. Shih and S. C. Lo, “Mycoplasmas and Oncogenesis: Persistent Infection and Multistage Malignant Transformation,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 92, No. 22, 1995, pp. 10197-10201.

[11]   S. Zhang, S. Tsai, T. T. Wu, B. Li, J. W. Shih and S. C. Lo, “Mycoplasma Fermentans Infection Promotes Immortalization of Human Peripheral Blood Mononuclear Cells in Culture,” Blood, Vol. 104, No. 13, 2004, pp. 4252-4259.

[12]   R. Dudler, C. Schmidhauser, R. W. Parish, R. E. Wettenhall and T. Schmidt, “A Mycoplasma High-Affinity Transport System and the in Vitro Invasiveness of Mouse Sarcoma Cells,” The EMBO Journal, Vol. 7, No. 12, 1988, pp. 3963-3970.

[13]   C. Schmidhauser, R. Dudler, T. Schmidt, R. W. Parish, “A Mycoplasmal Protein Influences Tumour Cell Invasiveness and Contact Inhibition in Vitro,” Journal of Cell Science, Vol. 95, No. 3, 1990, pp. 499-506.

[14]   C. M. Ketcham, S. Anai, R. Reutzel, S. Sheng, S. M. Schuster, R. B. Brenes, M. Agbandje-McKenna, R. McKenna, C. J. Rosser and S. K. Boehlein, “p37 Induces Tumor Invasiveness,” Molecular Cancer Therapeutics, Vol. 4, No. 7, 2005, pp. 1031-1038.

[15]   S. Goodison, K. Nakamura, K. A. Iczkowski, S. Anai, S. K. Boehlein and C. J. Rosser: “Exogenous Mycoplasmal p37 Protein Alters Gene Expression, Growth and Morphology of Prostate Cancer Cells,” Cytogenetic and Genome Research, Vol. 118, No. 2-4, 2007, pp. 204-213. 000108302

[16]   K. H. Sippel, A. H. Robbins, R. Reutzel, S. K. Boehlein, K. Namiki, S. Goodison, M. Agbandje-McKenna, C. J. Rosser and R. McKenna, “Structural Insights into the Extracytoplasmic Thiamine-Binding Lipoprotein p37 of Mycoplasma hyorhinis,” Journal of Bacteriology, Vol. 191, No. 8, 2009, pp. 2585-2592.

[17]   J. I. Glass, N. Assad-Garcia, N. Alperovich, S. Yooseph, M. R. Lewis, M. Maruf, C. A. Hutchison, 3rd, H. O. Smith and J. C. Venter, “Essential Genes of a Minimal Bacterium,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 103, No. 2, 2006, pp. 425-430.

[18]   C. L. McGowin, V. L. Popov and R. B. Pyles, “Intracellular Mycoplasma genitalium Infection of Human Vaginal and Cervical Epithelial Cells Elicits Distinct Patterns of Inflammatory Cytokine Secretion and Provides a Possible Survival Niche against Macrophage-Mediated Killing,” BMC Microbiology, Vol. 9, 2009, pp. 139.

[19]   S. Alvarez, B. M. Berla, J. Sheffield, R. E. Cahoon, J. M. Jez and L. M. Hicks, “Comprehensive Analysis of the Brassica juncea Root Proteome in Response to Cadmium Exposure by Complementary Proteomic approaches,” Proteomics, Vol. 9, No. 9, 200, pp. 2419-2431. pmic. 200800478

[20]   H. Wang, S. Alvarez and L. M. Hicks, “Comprehensive Comparison of iTRAQ and Label-Free LC-Based Quantitative Proteomics Approaches Using Two Chlamydomonas reinhardtii Strains of Interest for Biofuels Engineering,” Journal of Proteome Research, Vol. 11, No. 1, 2012, pp. 487-501.

[21]   W. Rizwani, M. Alexandrow and S. Chellappan, “Prohibitin Physically Interacts with MCM Proteins and Inhibits Mammalian DNA Replication,” Cell Cycle, Vol. 8, No. 10, 2009, pp. 1621-1629. 10.4161/cc.8.10.8578

[22]   A. B. Allam, S. Alvarez, M. B. Brown and L. Reyes, “Ureaplasma Parvum Infection Alters Filamin a Dynamics in Host Cells,” BMC Infectious Diseases, Vol. 11, No. , 2011, pp. 101. 10.1186/1471-2334-11-101

[23]   C. L. McGowin, A. L. Radtke, K. Abraham, D. H. Martin and M. Herbst-Kralovetz, “Mycoplasma genitalium Infection Activates Cellular Host Defense and Inflammation Pathways in a 3-Dimensional Human Endocervical Epithelial Cell Model,” The Journal of Infectious Diseases, Vol. 207, No. 12, 2013, pp. 1857-1868.

[24]   P. M. Ueno, J. Timenetsky, V. E. Centonze, J. J. Wewer, M. Cagle, M. A. Stein, M. Krishnan and J. B. Baseman, “Interaction of Mycoplasma genitalium with Host Cells: Evidence for Nuclear Localization,” Microbiology, Vol. 154, No. 10, 2008, pp. 3033-3041.

[25]   H. Tanno and M. Komada, “The Ubiquitin Code and its Decoding Machinery in the Endocytic Pathway,” Journal of Biochemistry, Vol. 153, No. 6, 2013, pp. 497-504.

[26]   B. D. Grant and J. G. Donaldson, “Pathways and Mechanisms of Endocytic Recycling,” Nature Reviews Molecular Cell Biology, Vol. 10, No. 9, 2009, pp. 597-608.

[27]   L. Hicke and R. Dunn, “Regulation of Membrane Protein Transport by Ubiquitin and Ubiquitin-Binding Proteins,” Annual Review of Cell and Developmental Biology, Vol. 19, 2003, pp. 141-172.

[28]   P. F. Egea, R. M. Stroud and P. Walter, “Targeting Proteins to Membranes: Structure of the Signal Recognition Particle,” Current Opinion in Structural Biology, Vol. 15, No. 2, 2005, pp. 213-220.

[29]   S. W. Fewell and J. L. Brodsky, “Entry into the Endoplasmic Reticulum: Protein Translocation, Folding and Quality Control,” In: Madame Curie Bioscience Database [Internet], Landes Bioscience, Austin, 2000.

[30]   A. Conesa, S. Gotz, J. M. Garcia-Gomez, J. Terol, M. Talon and M. Robles, “Blast2GO: A Universal Tool for Annotation, Visualization and Analysis in Functional Genomics Research,” Bioinformatics, Vol. 21, No. 18, 2005, pp. 3674-3676.

[31]   Y. J. Lim, J. A. Choi, H. H. Choi, S. N. Cho, H. J. Kim, E. K. Jo, J. K. Park and C. H. Song, “Endoplasmic Reticulum Stress Pathway-Mediated Apoptosis in Macrophages Contributes to the Survival of Mycobacterium Tuberculosis,” PloS One, Vol. 6, No. 12, 2011, p. e28531. journal.pone. 0028531

[32]   P. G. Needham and J. L. Brodsky, “How Early Studies on Secreted and Membrane Protein Quality Control Gave Rise to the ER Associated Degradation (ERAD) Pathway: The Early History of ERAD,” Biochimica et Biophysica Acta, Vol. 1833, No. 11, 2013, pp. 2447-2457. j.bbamcr. 2013.03.018

[33]   C. M. Fraser, J. D. Gocayne, O. White, M. D. Adams, R. A. Clayton, R. D. Fleischmann, C. J. Bult, A. R. Kerlavage, G. Sutton, J. M. Kelley et al., “The Minimal Gene Complement of Mycoplasma genitalium,” Science, Vol. 270, No. 5235, 1995, pp. 397-403.

[34]   C. L. McGowin and C. Anderson-Smits, “Mycoplasma genitalium: An Emerging Cause of Sexually Transmitted Disease in Women,” PLoS Pathogens, Vol. 7, No. 5, 2011, pp. e1001324. journal. ppat.1001324

[35]   G. H. Borner, M. Harbour, S. Hester, K. S. Lilley and M. S. Robinson, “Comparative Proteomics of Clathrin-Coated Vesicles,” The Journal of Cell Biology, Vol. 175, No. 4, 2006, pp. 571-578. 10.1083/jcb. 200607164

[36]   J. Li, J. D. Ferraris, D. Yu, T. Singh, Y. Izumi, G. Wang, M. Gucek and M. B. Burg, “Proteomic Analysis of High NaCl-Induced Changes in Abundance of Nuclear Proteins,” Physiological Genomics, Vol. 44, No. 21, 2012, pp. 1063-1071.

[37]   S. F. Dallo and J. B. Baseman, “Intracellular DNA Replication and Long-Term Survival of Pathogenic Mycoplasmas,” Microbial Pathogenesis, Vol. 29, No. 5, 2000, pp. 301-309. mpat. 2000.0395

[38]   M. W. Blaylock, O. Musatovova, J. G. Baseman and J. B. Baseman, “Determination of Infectious Load of Mycoplasma genitalium in Clinical Samples of Human Vaginal Cells,” Journal of Clinical Microbiology, Vol. 42, No. 2, 2004, pp. 746-752.

[39]   A. K. Saini, K. Maithal, P. Chand, S. Chowdhury, R. Vohra, A. Goyal, G. P. Dubey, P. Chopra, R. Chandra, A. K. Tyagi, et al., “Nuclear Localization and in Situ DNA Damage by Mycobacterium tuberculosis Nucleoside-Diphosphate Kinase,” The Journal of Biological Chemistry, Vol. 279, No. 48, 2004, pp. 50142-50149.

[40]   D. V. Zurawski, C. Mitsuhata, K. L. Mumy, B. A. McCormick and A. T. Maurelli, “OspF and OspC1 Are Shigella flexneri Type III Secretion System Effectors that Are Required for Postinvasion Aspects of Virulence,” Infection and Immunity, Vol. 74, No. 10, 2006, pp. 5964-5976. IAI. 00594-06

[41]   L. A. McSweeney and L. A. Dreyfus, “Nuclear Localization of the Escherichia coli Cytolethal Distending Toxin CdtB Subunit,” Cellular Microbiology, Vol. 6, No. 5, 2004, pp. 447-458. j.1462-5822. 2004. 00373.x

[42]   R. R. Zielinski, B. J. Eigl and K. N. Chi, “Targeting the Apoptosis Pathway in Prostate Cancer,” Cancer Journal, Vol. 19, No. 1, 2013, pp. 79-89.

[43]   Y. Tu, C. Chen, J. Pan, J. Xu, Z. G. Zhou and C. Y. Wang, “The Ubiquitin Proteasome Pathway (UPP) in the Regulation of Cell Cycle Control and DNA Damage Repair and Its Implication in Tumorigenesis,” International Journal of Clinical and Experimental Pathology, Vol. 5, No. 8, 2012, pp. 726-738.

[44]   D. H. Suh, M. K. Kim, H. S. Kim, H. H. Chung and Y. S. Song, “Unfolded Protein Response to Autophagy as a Promising Druggable Target for Anticancer Therapy,” Annals of the New York Academy of Sciences, Vol. 1271, 2012, pp. 20-32.

[45]   M. Hausmann, “How Bacteria-Induced Apoptosis of Intestinal Epithelial Cells Contributes to Mucosal Inflammation,” International Journal of Inflammation, Vol. 2010, 2010, Article ID: 574568.

[46]   E. Merquiol, D. Uzi, T. Mueller, D. Goldenberg, Y. Nahmias, R. J. Xavier, B. Tirosh and O. Shibolet, “HCV Causes Chronic Endoplasmic Reticulum Stress Leading to Adaptation and Interference with the Unfolded Protein Response,” PloS One, Vol. 6, No. 9, 2011, p. e24660. pone. 0024660

[47]   V. E. Havel, N. K. Wool, D. Ayad, K. M. Downey, C. F. Wilson, P. Larsen, J. T. Djordjevic and J. C. Panepinto, “Ccr4 Promotes Resolution of the Endoplasmic Reticulum Stress Response during Host Temperature Adaptation in Cryptococcus neoformans,” Eukaryotic Cell, Vol. 10, No. 7, 2011, pp. 895-901.

[48]   G. Cheng, Z. Feng and B. He, “Herpes Simplex Virus 1 Infection Activates the Endoplasmic Reticulum Resident Kinase PERK and Mediates eIF-2alpha Dephosphorylation by the Gamma1 34.5 Protein,” Journal of Virology, Vol. 79, No. 3, 2005, pp. 1379-1388.

[49]   J. A. Isler, A. H. Skalet and J. C. Alwine, “Human Cytomegalovirus Infection Activates and Regulates the Unfolded Protein Response,” Journal of Virology, Vol. 79, No. 11, 2005, pp. 6890-6899.

[50]   J. C. Goodall, C. Wu, Y. Zhang, L. McNeill, L. Ellis, V. Saudek and J. S. Gaston, “Endoplasmic Reticulum Stress-Induced Transcription Factor, CHOP, Is Crucial for Dendritic Cell IL-23 Expression,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 107, No. 41, 2010, pp. 17698-17703.

[51]   N. J. Buchkovich, T. G. Maguire, A. W. Paton, J. C. Paton and J. C. Alwine, “The Endoplasmic Reticulum Chaperone BiP/GRP78 Is Important in the Structure and Function of the Human Cytomegalovirus Assembly Compartment,” Journal of Virology, Vol. 83, No. 22, 2009, pp. 11421-11428. JVI.00762-09

[52]   M. Baird, P. Woon Ang, I. Clark, D. Bishop, M. Oshima, M. C. Cook, C. Hemmings, S. Takeishi, D. Worthley, A. Boussioutas, et al., “The Unfolded Protein Response Is Activated in Helicobacter-Induced Gastric Carcinogenesis in a Non-Cell Autonomous Manner,” Laboratory Investigation, Vol. 93, No. 1, 2013, pp. 112-122.

[53]   H. H. Chu, J. S. Bae, K. M. Kim, H. S. Park, D. H. Cho, K. Y. Jang, W. S. Moon, M. J. Kang, D. G. Lee and M. J. Chung, “Expression of CHOP in Squamous Tumor of the Uterine Cervix,” Korean Journal of Pathology, Vol. 46, No. 5, 2012, pp. 463-469.