In-Place Matrix Inversion by Modified Gauss-Jordan Algorithm

Show more

References

[1] W. A. Smith, “Elementary Numerical Analysis,” Prentice-Hall, Inc., Englewood Cliffs, 1986, pp. 51-52.

[2] D. DasGupta, “McAuto STRUDL RECON—A Reinforced Concrete Frame Design Software,” Concrete International, Nov 1982, pp. 37-42.
http://www.concreteinternational.com/pages/featured_article.asp?ID=9129

[3] S. S. Tezcan, “Discussion,” Journal of the Structural Division, American Society of Civil Engineers, Vol. 89, No. ST6, Part I, 1963, p. 445.

[4] J. H. Mathews, “Lab for Matrix Inversion, Exercise 2,” California State University, Fullerton, 1998.
http://math.fullerton.edu/mathews/numerical/mi.htm

[5] T. McFarland, “The Inverse of an n × n Matrix,” University of Wisconsin-Whitewater, Whitewater, 2007.
http://math.uww.edu/faculty/mcfarlat/inverse.htm

[6] R. W. Clough and A. K Chopra, “Earthquake Stress Analysis in Earth Dams,” University of California, Berkeley, 1965, 24p.

[7] Staff Reporter, “Roads, Bridges and Computers,” Roads & Bridges Magazine, May 1987, p. 48.

[8] V. A. Patel, “Numerical Analysis,” Harcourt Brace College Publishers, Fort Worth, 1994, pp. 216-218.

[9] B. Noble, “Applied Linear Algebra,” Prentice-Hall, Inc., Englewood Cliffs, 1969, pp. 214-215.

[10] G. Mills, “Introduction to Linear Algebra for Social Scientists,” George Allen and Unwin, Ltd., London, 1969, pp. 104-105.

[11] R. H. Pennington, “Introductory Computer Methods and Numerical Analysis,” The McMillan Co., New York, 1968, pp. 323-325.