Tuning Recurrent Neural Networks for Recognizing Handwritten Arabic Words

Show more

References

[1] P. Mehra and B. W. Wah, “Artificial Neural Networks: Concepts and Theory,” IEEE Computer Society Press, Los Alamitos, 1992.

[2] A. Graves, “Supervised Sequence Labelling with Recurrent Neural Networks,” Studies in Computational Intelligence, Vol. 385, Springer, 2012.
http://dx.doi.org/10.1007/978-3-642-24797-2

[3] V. Margner and H. El Abed, “ICDAR 2009—Arabic Handwriting Recognition Competition,” International Conference on Document Analysis and Recognition, Barcelona, 26-29 July 2009, pp. 1383-1387.

[4] X. Yao, “Evolving Artificial Neural Networks,” Proceedings of the IEEE, Vol. 87, No. 9, 1999, pp. 1423-1447. http://dx.doi.org/10.1109/5.784219

[5] X. Yao and Y. Liu, “A New Evolutionary System for Evolving Artificial Neural Networks,” IEEE Transactions on Neural Networks, Vol. 8, No. 3, 1997, pp. 694-713.
http://dx.doi.org/10.1109/ 72.572107

[6] S. Theodoridis and K. Koutroumbas, “Pattern Recognition,” Academic Press, Waltham, 2006.

[7] Y. Chauvin, “Generalization Performance of Overtrained Back-Propagation Networks,” Neural Networks, Springer, 1990, pp. 45-55.

[8] G. Mirchandani and W. Cao, “On Hidden Nodes for Neural Nets,” IEEE Transactions on Circuits and Systems, Vol. 36, No. 5, 1989, pp. 661-664.
http://dx.doi.org/10.1109/31.31313

[9] Y. Le Cun, J. S. Denker, S. A. Solla, R. E. Howard and L. D. Jackel, “Optimal Brain Damage,” Advances in Neural Information Processing Systems, Vol. 2, No. 1, 1990, p. 1990.

[10] B. Hassibi, D. G. Stork and G. J. Wolff, “Optimal Brain Surgeon and General Network Pruning,” International Conference on Neural Networks, Vol. 1, 1993, pp. 293-299. http://dx.doi.org/10.1109/ ICNN.1993.298572

[11] A. S. Weigend, D. E. Rumelhart and B. A. Huberman, “Back-Propagation, Weight-Elimination and Time Series Prediction,” Proceedings of 1990 Connectionist Models Summer School, Vol. 105, Morgan Kaufmann, 1990.

[12] S. E. Fahlman and C. Lebiere, “The Cascadecorrelation Learning Architecture,” Technical Report, Computer Science Department, Carnegie Mellon University, 1989.

[13] S. J. Perantonis, N. Ampazis and V. Virvilis, “A Learning Framework for Neural Networks Using Constrained Optimization Methods,” Annals of Operations Research, Vol. 99, No. 1-4, 2000, pp. 385-401.
http://dx.doi.org/10.1023/A:1019240304484

[14] F.-J. Lin, C.-H. Lin and P.-H. Shen, “Selfconstructing Fuzzy Neural Network Speed Controller for PermanentMagnet Synchronous Motor Drive,” IEEE Transactions on Fuzzy Systems, Vol. 9, No. 5, 2001, pp. 751-759.
http://dx.doi.org/10.1109/91.963761

[15] M. C. Mozer and P. Smolensky, “Using Relevance to Reduce Network Size Automatically,” Connection Science, Vol. 1, No. 1, 1989, pp. 3-16.
http://dx.doi.org/10.1080/09540098908915626

[16] C.-C. Teng and B. W. Wah, “Automated Learning for Reducing the Configuration of a Feedforward Neural Network,” IEEE Transactions on Neural Networks, Vol. 7, No. 5, 1996, pp. 1072-1085.
http://dx.doi.org/10.1109/72.536305

[17] F. H.-F. Leung, H.-K. Lam, S.-H. Ling and P. K.-S. Tam, “Tuning of the Structure and Parameters of a Neural Network Using an Improved Genetic Algorithm,” IEEE Transactions on Neural Networks, Vol. 14, No. 1, 2003, pp. 79-88. http://dx.doi.org/10.1109/TNN.2002.804317

[18] N. Weymaere and J.-P. Martens, “On the Initialization and Optimization of Multilayer Perceptrons,” IEEE Transactions on Neural Networks, Vol. 5, No. 5, 1994, pp. 738-751. http://dx.doi.org/10.1109/ 72.317726

[19] W. Sukthomya and J. Tannock, “The Optimisation of Neural Network Parameters Using Taguchi’s Design of Experiments Approach: An Application in Manufacturing Process Modelling,” Neural Computing & Applications, Vol. 14, No. 4, 2005, pp. 337-344.
http://dx.doi.org/10.1007/s00521-005-0470-3

[20] Y.-S. Kim and B.-J. Yum, “Robust Design of Multilayer Feedforward Neural Networks: An Experimental Approach,” Engineering Applications of Artificial Intelligence, Vol. 17, No. 3, 2004, pp. 249-263.
http://dx.doi.org/10.1016/j.engappai.2003.12.005

[21] M. Packianather, P. Drake and H. Rowlands, “Optimizing the Parameters of Multilayered Feedforward Neural Networks through Taguchi Design of Experiments,” Quality and Reliability Engineering International, Vol. 16, No. 6, 2000, pp. 461-473.
http://dx.doi.org/10.1002/1099-1638(200011/12)16:6<461::AID-QRE341>3.0.CO;2-G

[22] S. Yang and G. Lee, “Neural Network Design by Using Taguchi Method,” Journal of Dynamic Systems, Measurement, and Control, Vol. 121, No. 3, 1999, pp. 560-563.
http://dx.doi.org/10.1115/1.2802515

[23] P. Balestrassi, E. Popova, A. d. Paiva and J. Marangon Lima, “Design of Experiments on Neural Network’s Training for Nonlinear Time Series Forecasting,” Neurocomputing, Vol. 72, No. 4, 2009, pp. 1160-1178.
http://dx.doi.org/10.1016/j.neucom.2008.02.002

[24] R. Behmanesh and I. Rahimi, “Control Chart Forecasting: A Hybrid Model Using Recurrent Neural Network, Design of Experiments and Regression,” Proceedings of Business Engineering and Industrial Applications Colloquium, Kuala Lumpur, 7-8 April 2012, pp. 435-439.

[25] R. Bozzo, G. Coletti, C. Gemme and F. Guastavino, “Application of Design of Experiment Techniques to Measurement Procedures: An Example of Optimization Applied to the Digital Measurement of Partial Discharges,” Proceedings of Sensing, Processing, Networking, Instrumentation and Measurement Technology Conference, Vol. 1, 1997, pp. 470-475.

[26] D. Staiculescu, J. Laskar and M. M. Tentzeris, “Design of Experiments (DOE) Technique for Microwave/Millimeter Wave Flip-Chip Optimization,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 16, No. 2, 2003, pp. 97-103.
http://dx.doi.org/ 10.1002/jnm.485

[27] A. Olusanya, “The Use of Design of Experiments Techniques to Determine the Relative Effectiveness of Silane Coupling Agents on the Durability of Titanium Alloy Joints: A Case Study,” Techical Report CMMT (A) 128, National Physical Laboratory, 1998.

[28] V. Margner and H. El Abed, “ICDAR 2011—Arabic Handwriting Recognition Competition,” International Conference on Document Analysis and Recognition, Beijing, 18-21 September 2011, pp. 1444-1448.

[29] G. Abandah, F. Jamour and E. Qaralleh, “Recognizing Handwritten Arabic Words Using Grapheme Segmentation and Recurrent Neural Networks,” Submitted.

[30] G. Abandah and F. Jamour, “Recognizing Handwritten Arabic Script through Efficient Skeleton-Based Grapheme Segmentation Algorithm,” 10th International Conference on Intelligent Systems Design and Applications, Cairo, 29 November-1 December 2010, pp. 977-982.

[31] A. Graves and J. Schmidhuber, “Framewise Phoneme Classification with Bidirectional LSTM and Other Neural Network Architectures,” Neural Networks, Vol. 18, No. 5-6, 2005, pp. 602-610.
http://dx.doi.org/10.1016/j.neunet. 2005.06.042

[32] A. Graves, S. Fernández, F. Gomez and J. Schmidhuber, “Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks,” Proceedings of International Conference on Machine Learning, Pittsburgh, 25-26 June 2006.

[33] A. Graves, “RNNLIB: A Recurrent Neural Network Library for Sequence Learning Problems,” 2013.
http://sourceforge.net/projects/rnnl/

[34] E. Grosicki and H. El Abed, “ICDAR 2009 Handwriting Recognition Competition,” International Conference on Document Analysis and Recognition, Barcelona, 26-29 July 2009, pp. 1398-1402.

[35] S. Mozaffari and H. Soltanizadeh, “ICDAR 2009 HandWritten Farsi/Arabic Character Recognition Competition,” International Conference on Document Analysis and Recognition, Barcelona, 26-29 July 2009, pp. 1413-1417.

[36] A. Graves, “Supervised Sequence Labelling with Recurrent Neural Networks,” PhD Thesis, Technische Universitat München, 2008.

[37] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, Vol. 9, No. 8, 1997, pp. 1735-1780. http://dx.doi.org/10.1162/neco.1997.9.8.1735

[38] R. Jain, “The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation and Modeling,” John Wiley & Sons, New York, 1991.

[39] M. Pechwitz, S. S. Maddouri, V. Margner, N. Ellouze and H. Amiri, “IFN/ENIT—Database of Handwritten Arabic Words,” 7th Colloque International Francophone sur l’Ecrit et le Document, 2002, pp. 129-136.