Analysis of a Delayed SIR Model with Exponential Birth and Saturated Incidence Rate

Show more

References

[1] R. M. Anderson and R. M. May, “Population Biology of Infectious Diseases I,” Nature, Vol. 280, 1979, pp. 361367. http://dx.doi.org/10.1038/280361a0

[2] R. M. May and R. M. Anderson, “Population Biology of Infectious Diseases II,” Nature, Vol. 280, 1979, pp. 455461. http://dx.doi.org/10.1038/280455a0

[3] H. W. Hethcote and P. van den Driessche, “An SIS EpiDemic Model with Variable Population Size and a Delay,” Journal of Mathematical Biology, Vol. 34, No. 2, 1995, pp. 177-194.
http://dx.doi.org/10.1007/BF00178772

[4] F. Chamchod and N. F. Britton, “Analysis of a VectorBias Model on Malaria Transmission,” Bulletin of Mathematical Biology, Vol. 73, No. 3, 2011, pp. 639-657.
http://dx.doi.org/10.1007/s11538-010-9545-0

[5] K. L. Cooke and P. van den Driessche, “Analysis of an SEIRS Epidemic Model with Two Delays,” Journal of Mathematical Biology, Vol. 35, No. 2, 1996, pp. 240-260.
http://dx.doi.org/10.1007/s002850050051

[6] Y. Takeuchi, W. Ma and E. Beretta, “Global Asymptotic Properties of a Delay SIR Epidemic Model with Finite Incubation Times,” Nonlinear Analysis, Vol. 42, No. 6, 2000, pp. 931-947.
http://dx.doi.org/10.1016/S0362-546X(99)00138-8

[7] J. Mena-Lorca and H. W. Hetheote, “Dynamic Models of Infectious Diseases as Regulators of Population Sizes,” Journal of Mathematical Biology, Vol. 30, No. 7, 1992, pp. 693-716.

[8] B. K. Mishra and D. K. Saini, “SEIRS Epidemic Model with Delay for Transmission of Malicious Objects in Computer Network,” Applied Mathematics and Computation, Vol. 188, No. 2, 2007, pp. 1476-1482.
http://dx.doi.org/10.1016/j.amc.2006.11.012

[9] M. Y. Li, J. R. Graef, L. Wang and J. Karsai, “Global Dynamics of a SEIR Model with Varying Total Population Size,” Mathematical Biosciences, Vol. 160, No. 2, 1999, pp. 191-213.
http://dx.doi.org/10.1016/S0025-5564(99)00030-9

[10] M. Gabriela, M. Gomes, L. J. White and G. F. Medley, “The Reinfection Threshold,” Journal of Theoretical Biology, Vol. 236, No. 1, 2005, pp. 111-113.
http://dx.doi.org/10.1016/j.jtbi.2005.03.001

[11] Z. Jiang and J. Wei, “Stability and Bifurcation Analysis in a Delayed SIR Model,” Chaos, Solitons & Fractals, Vol. 35, No. 3, 2008, pp. 609-619.
http://dx.doi.org/10.1016/j.chaos.2006.05.045

[12] T. Zhang and Z. Teng, “Global Behavior and Permanence of SIRS Epidemic Model with Time Delay,” Nonlinear Analysis: Real World Applications, Vol. 9, No. 4, 2008, pp. 1409-1424.
http://dx.doi.org/10.1016/j.nonrwa.2007.03.010

[13] V. Capasso and G. Serio, “A Generalization of the Kermack-Mckendrick Deterministic Epidemic Model,” Mathematical Biosciences, Vol. 42, No. 1-2, 1978, pp. 41-61.
http://dx.doi.org/10.1016/0025-5564(78)90006-8

[14] A. Kaddar, “On the Dynamics of a Delayed SIR Epidemic Model with a Modified Saturated Incidence Rate,” Journal of Differential Equations, Vol. 2009, No. 133, 2009, pp. 1-7.

[15] R. Xu and Z. Ma, “Global Stability of a SIR Epidemic Model with Nonlinear Incidence Rate and Time Delay,” Nonlinear Analysis: Real World Applications, Vol. 10, No. 5, 2009, pp. 3175-3189.
http://dx.doi.org/10.1016/j.nonrwa.2008.10.013

[16] A. Kaddar, A. Abta and H. T. Alaoui, “Stability Analysis in a Delayed SIR Epidemic Model with a Saturated Incidence Rate,” Nonlinear Analysis: Modelling and Control, Vol. 15, No. 3, 2010, pp. 299-306.

[17] A. Abta, A. Kaddar and H. T. Alaoui, “Global Stability for Delay SIR and SEIR Epidemic Models with Saturated Incidence Rates,” Journal of Differential Equations, Vol. 2012, No. 23, 2012, pp. 1-13.

[18] H. Wei, X. Li and M. Martcheva, “An Epidemic Model of a Vector-Borne Disease with Direct Transmission and Time Delay,” Journal of Mathematical Analysis and Applications, Vol. 342, No. 2, 2008, pp. 895-908.
http://dx.doi.org/10.1016/j.jmaa.2007.12.058

[19] R. Xu and Z. Ma, “Global Stability of a Delayed SEIRS Epidemic Model with Saturation Incidence Rate,” Nonlinear Dynamics, Vol. 61, No. 1, 2010, pp. 229-239.
http://dx.doi.org/10.1007/s11071-009-9644-3

[20] R. Xu, Z. Ma and Z. Wang, “Global Stability of a Delayed SIRS Epidemic Model with Saturation Incidence Rate and Temporary,” Computers & Mathematics with Applications, Vol. 59, No. 9, 2010, pp. 3211-3221.
http://dx.doi.org/10.1016/j.camwa.2010.03.009

[21] H. Huo and Z. Ma, “Dynamics of a Delayed Epidemic Model with Non-Monotonic Incidence Rate,” Communications in Nonlinear Science and Numerical Simulation, Vol. 15, No. 2, 2010, pp. 459-468.

[22] R. Xu and Z. Ma, “Stability of a Delayed SIRS Epidemic Model with a Nonlinear Incidence Rate,” Chaos, Solitons & Fractals, Vol. 41, No. 5, 2009, pp. 2319-2325.
http://dx.doi.org/10.1016/j.chaos.2008.09.007