Dale’s Principle Is Necessary for an Optimal Neuronal Network’s Dynamics

Show more

References

[1] P. Strata and R. Harvey, “Dale’s Principle,” Brain Research Bulletin, Vol. 50, No. 5-6, 1999, pp. 349-350.
http://dx.doi.org/10.1016/S0361-9230(99)00100-8

[2] M. F. Bear, B. W. Connors and M. A. Paradiso, “Neuroscience—Exploring the Brain,” 3rd Edition, Lippincott Williams & Wilkins, Philadelphia, 2007

[3] G. Burnstock, “Cotransmission,” Current Opinion in Pharmacology, Vol. 4, No. 1, 2004, pp. 47-52.
http://dx.doi.org/10.1016/j.coph.2003.08.001

[4] L. E. Trudeau and R. Gutiérrez, “On Cotransmission & Neurotransmitter Phenotype Plasticity,” Molecular Interventions, Vol. 7, No. 3, 2007, pp. 138-146.
http://dx.doi.org/10.1124/mi.7.3.5

[5] R. E. Mirollo and S. H. Strogatz, “Synchronization of Pulse Coupled Biological Oscillators,” SIAM Journal on Applied Mathematics, Vol. 50, No. 6, 1990, pp. 16451662. http://dx.doi.org/10.1137/0150098

[6] L. Gómez and R. Budelli, “Two-Neuron Networks II: Leaky Integrator Pacemaker Models,” Biological Cybernetics, Vol. 74, No. 2, 1996, pp. 131-137.
http://dx.doi.org/10.1007/BF00204201

[7] W. Mass and C. M. Bishop, “Pulsed Neural Networks,” MIT Press, Cambridge, 2001.

[8] G. B. Ermentrout and D. H. Terman, “Mathematical Foundations of Neuroscience,” In: Interdisciplinary Applied Mathematics, Springer, New York, 2010.
http://link.springer.com/book/10.1007/978-0-387-87708-2/page/1

[9] W. Gerstner and W. Kistler, “Spiking Neuron Models,” Cambridge University Press, Cambridge, 2002.
http://dx.doi.org/10.1017/CBO9780511815706

[10] K. K. Lin, K. C. A. Wedgwood, S. Coombes and L.-S. Young, “Limitations of Perturbative Techniques in the Analysis of Rhythms and Oscillations,” Journal of Mathematical Biology, Vol. 66, No. 1-2, 2013, pp. 139-161.
http://dx.doi.org/10.1007/s00285-012-0506-0

[11] E. M. Izhikevich, “Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting,” MIT Press, Cambridge, 2007.

[12] A. J. Catllá, D. G. Schaeffer, T. P. Witelski, E. E. Monson and A. L. Lin, “On Spiking Models for Synaptic Activity and Impulsive Differential Equations,” SIAM Review, Vol. 50, No. 3, 2008, pp. 553-569.
http://dx.doi.org/10.1137/060667980

[13] E. Catsigeras and P. Guiraud, “Integrate and Fire Neural Networks, Piecewise Contractive Maps and Limit Cycles,” Journal of Mathematical Biology, 2013, in Press.
http://dx.doi.org/10.1007/s00285-012-0560-7

[14] V. D. Milman and A. D. Myshkis, “On the Stability of Motion in the Presence of Impulses (in Russian),” Siberian Mathematical Journal, Vol. 1, No. 2, 1960, pp. 233237.

[15] G. T. Stamov and I. Stamova, “Almost Periodic Solutions for Impulsive Neural Networks with Delay,” Applied Mathematical Modelling, Vol. 31, No. 7, 2007, pp. 12631270. http://dx.doi.org/10.1016/

j.apm.2006.04.008

[16] R. F. Schmidt and G. Thews, “Human Physiology,” SpringerVerlag, Berlin, 1983.

[17] M. Megas, Z. S. Emri, T. F. Freund and A. I. Gulyas, “Total Number and Distribution of Inhibitory and excitatory Synapses on Hippocampal CA1 Pyramidal Cells,” Neuroscience, Vol. 102, No. 3, 2001, pp. 527-540.
http://dx.doi.org/10.1016/S0306-4522(00)00496-6

[18] J. Van Mill, “Domain Invariance,” In: M. Hazewinkel, Ed., Encyclopedia of Mathematics, Springer, Berlin, 20012003.
http://www.springer.com/mathematics/book/978-1-4020-0609-8