JEMAA  Vol.5 No.9 , September 2013
The Potential-Vortex Theory of Electromagnetic Waves
Abstract: An electromagnetic wave is a complex vortex and a potential process. This allows us to omit the Lorentz gauge, formulate a mathematically precise theory, and avoid physics discordances. The mechanism of distribution of complex waves in dielectric and electrical conductive environments was described.
Cite this paper: A. Tomilin, "The Potential-Vortex Theory of Electromagnetic Waves," Journal of Electromagnetic Analysis and Applications, Vol. 5 No. 9, 2013, pp. 347-353. doi: 10.4236/jemaa.2013.59055.

[1]   H. Helmholtz, “Uber Integrale der Hydrodynamischen Gleichungen, Welche den Wirbelbewegungen Entsprechen,” Crelle’s Journal, Vol. 1858, No. 55, 1858, pp. 25-55.

[2]   C. Monstein and J. P. Wesley, “Observation of Scalar Longitudinal Electrodynamic Waves,” Europhysics Letters, Vol. 59 , No. 4, 2002, pp. 514-520.

[3]   K. Meyl, “Scalar Waves: Theory and Experiments,” Journal of Scientific Exploration, Vol. 15, No. 2, 2001, pp. 199-205.

[4]   B. Sacco and A. Tomilin, “The Study of Electromagnetic Processes in the Experiments of Tesla,” 2013.

[5]   K. J. van Vlaenderen and A. Waser, “Generalization of Classical Electrodynamics to Admit a Scalar Field and Longitudinal Waves,” Hadronic Journal, Vol. 24, 2001, pp. 609-628.

[6]   D. A. Woodside, “Three-Vector and Scalar Field Identities and Uniqueness Theorems in Euclidean and Minkowski Spaces,” American Journal of Physics, Vol. 77, No. 5, 2009, pp. 438-446.

[7]   A. I. Arbab and Z. A. Satti, “On the Generalized Maxwell Equations and Their Prediction of Electroscalar Wave,” Progress in Physics, Vol. 2, 2009, pp. 8-13.

[8]   D. V. Podgainy and O. A. Zaimidoroga, “Nonrelativistic Theory of Electroscalar Field and Maxwell Electrodynamics,” 2013.

[9]   E. Purcell, “Electricity and Magnetism,” McGraw-Hill, New York, 1963, 430 pp.

[10]   А. К. Томилин, “Обобщенная электродинамика,” Усть-Каменогорск, ВКГТУ, 2013.

[11]   A. K. Tomilin, “The Fundamentals of Generalized Electrodynamics,” 2013.

[12]   A. K. Tomilin, “The Potential-Vortex Theory of the Electromagnetic Field,” 2013.