AJCC  Vol.2 No.3 A , September 2013
Spatially Explicit Modeling of Long-Term Drought Impacts on Crop Production in Austria
ABSTRACT

Droughts have serious and widespread impacts on crop production with substantial economic losses. The frequency and severity of drought events may increase in the future due to climate change. We have developed three meteorological drought scenarios for Austria in the period 2008-2040. The scenarios are defined based on a dry day index which is combined with bootstrapping from an observed daily weather dataset of the period 1975-2007. The severity of long-term drought scenarios is characterized by lower annual and seasonal precipitation amounts as well as more significant temperature increases compared to the observations. The long-term impacts of the drought scenarios on Austrian crop production have been analyzed with the biophysical process model EPIC (Environmental Policy Integrated Climate). Our simulation outputs show thatfor areas with historical mean annual precipitation sums below 850 mmalready slight increases in dryness result in significantly lower crop yields i.e. depending on the drought severity, between 0.6% and 0.9% decreases in mean annual dry matter crop yields per 1.0% decrease in mean annual precipitation sums. The EPIC results of more severe droughts show that spring and summer precipitation may become a limiting factor in crop production even in regions with historical abundant precipitation.


Cite this paper
F. Strauss, E. Moltchanova and E. Schmid, "Spatially Explicit Modeling of Long-Term Drought Impacts on Crop Production in Austria," American Journal of Climate Change, Vol. 2 No. 3, 2013, pp. 1-11. doi: 10.4236/ajcc.2013.23A001.
References
[1]   Commission of the European Communities, “Addressing the Challenge of Water Scarcity and Droughts in the European Union,” Communication from the Commission to the European Parliament and the Council, 414 Final, Brussels, 2007.

[2]   R. Brázdil, M. Trnka, P. Dobrovolny, K. Chromá, P. Hlavinka and Z. Zalud, “Variability of Droughts in the Czech Republic, 1881-2006,” Theoretical and Applied Climatology, Vol. 97, No. 3-4, 2009, pp. 297-315. doi:10.1007/s00704-008-0065-x

[3]   K. Yurekli and A. Kurunc, “Simulating Agricultural Drought Periods Based on Daily Rainfall and Crop Water Consumption,” Journal of Arid Environments, Vol. 67, No. 4, 2006, pp. 629-640. doi:10.1016/j.jaridenv.2006.03.026

[4]   J. Q. Zhang, “Risk Assessment of Drought Disaster in the Maize-Growing Region of Songliao Plain, China,” Agriculture, Ecosystems and Environment, Vol. 102, No. 2, 2004, pp. 133-153. doi:10.1016/j.agee.2003.08.003

[5]   G. M. Richter and M. A. Semenov, “Modelling Impacts of Climate Change on Wheat Yields in England and Wales: Assessing Drought Risks,” Agricultural Systems, Vol. 84, No. 1, 2005, pp. 77-97. doi:10.1016/j.agsy.2004.06.011

[6]   S. J. Eisenreich, “Climate Change and European Droughts,” In: Climate Change and the European Water Dimension, European Commission, Luxemburg, 2005, pp. 121-135.

[7]   A. K. Mishra and V. P. Singh, “A Review of Drought Concepts,” Journal of Hydrology, Vol. 391, No. 1-2, 2010, pp. 202-216. doi:10.1016/j.jhydrol.2010.07.012

[8]   Intergovernmental Panel on Climate Change IPCC, Synthesis Report. Contribution of Working Groups I, II and III to the 4th Assessment Report of the Intergovernmental Panel on Climate Change, 2007.

[9]   E. J. Burke, S. J. Brown and N. Christidis, “Modeling the Recent Evolution of Global Drought and Projections for the Twenty-First Century with the Hadley Centre Climate Model,” Journal of Hydrometeorology, Vol. 7, No. 5, 2006, pp. 1113-1125. doi:10.1175/JHM544.1

[10]   J. Q. Zhang, “A Study on Damage Degree and Risk Assessment and Regional Classification of Meteorological Disasters: Case Studies of Yamaguchi Prefecture in Japan and Songliao Plain in China,” Ph.D. Thesis, Tottori University, Tottori, 2000.

[11]   M. H. Yang and J. Q. Zhang, “Assessment and Regionalization of Meteorological Disaster to Maize in Jilin Province, China,” In: E. P. Wan and X. R. Xu, Eds., Prediction and Monitoring of Maize Yield by Remote Sensing in China, Chinese Science and Technology Press, Beijing, 1996, pp. 196-218.

[12]   V. Kumar and U. Panu, “Predictive Assessment of Severity of Agricultural Droughts Based on Agro-Climatic Factors,” Journal of the American Water Resources Association, Vol. 33, No. 6, 1997, pp. 1255-1264. doi:10.1111/j.1752-1688.1997.tb03550.x

[13]   J. E. Olesen and M. Bindi, “Consequences of Climate Change for European Agricultural Productivity, Land Use and Policy,” European Journal of Agronomy, Vol. 16, No. 4, 2002, pp. 239-262. doi:10.1016/S1161-0301(02)00004-7

[14]   J. Eitzinger, C. Kersebaum and H. Formayer, “Landwirtschaft im Klimawandel—Auswirkungen und Anpassungsstrategien für die Land-und Forstwirtschaft in Mitteleuropa,” AgriMedia, Clenze, 2009.

[15]   F. Ewert, D. Rodriguez, P. Jamieson, M. A. Semenov, R. A. C Mitchell, J. Goudriaan, J. R. Porter, B. A. Kimball, P. J. Pinter Jr., R. Manderscheid, H. J. Weigel, A. Fangmeier, E. Fereres and F. Villalobos, “Effects of Elevated CO2 and Drought on Wheat: Testing Crop Simulation Models for Different Experimental and Climatic Conditions,” Agriculture, Ecosystems and Environment, Vol. 93, No. 1-3, 2002, pp. 249-266. doi:10.1016/S0167-8809(01)00352-8

[16]   Q. Zhang, P. Sun, V. P. Singh and X. Chen, “Spatial-Temporal Precipitation Changes (1956-2000) and Their Implications for Agriculture in China,” Global and Planetary Change, Vol. 82-83, 2012, pp. 86-95. doi:10.1016/j.gloplacha.2011.12.001

[17]   A. K. Mishra and V. P. Singh, “Drought Modeling—A Review,” Journal of Hydrology, Vol. 403, No. 1-2, 2011, pp. 157-175. doi:10.1016/j.jhydrol.2011.03.049

[18]   K. R. Gabriel and J. Neumann, “A Markov Chain Model for Daily Rainfall Occurrences at Tel Aviv,” Quarterly Journal of the Royal Meteorological Society, Vol. 88, No. 375, 1962, pp. 90-95. doi:10.1002/qj.49708837511

[19]   S. Blenkinsop and H. J. Fowler, “Changes in Drought Characteristics for Europe Projected by the PRUDENCE Regional Climate Models,” International Journal of Climatology, Vol. 27, No. 12, 2007, pp. 1595-1610. doi:10.1002/joc.1538

[20]   F. Strauss, H. Formayer and E. Schmid, “High Resolution Climate Data for Austria in the Period from 2008 to 2040 from a Statistical Climate Change Model,” International Journal of Climatology, Vol. 33, No. 2, 2013, pp. 430-443. doi:10.1002/joc.3434

[21]   M. Mudelsee, “Climate Time Series Analysis,” Springer, Dordrecht, 2010. doi:10.1007/978-90-481-9482-7

[22]   J. R. Williams, “The EPIC Model,” In: V. P. Singh, Ed., Computational Models of Watershed Hydrology, Water Resources Publications, Highlands Ranch, Colorado, 1995, pp. 909-1000.

[23]   R. C. Izaurralde, J. R. Williams, W. B. McGill, N. J. Rosenberg and M. C. Quiroga, “Simulating Soil C Dynamics with EPIC: Model Description and Testing against Long-Term Data,” Ecological Modelling, Vol. 192, No. 3-4, 2006, pp. 362-384. doi:10.1016/j.ecolmodel.2005.07.010

[24]   I. Auer, R. Bohm, H. Mohnl, R. Potzmann and W. Schoner, “OKLIM—A Digital Climatology of Austria 1961-1990,” Proceedings of the 3rd European Conference on Applied Climatology, Pisa, 16-20 October 2000, CD Rom.

[25]   W. Schoner, I. Auer, R. Bohm and S. Thaler, “Qualitatskontrolle und Statistische Eigenschaften Ausgewahlter Klimaparameter auf Tageswertbasis im Hinblick auf Extremwertanalysen,” Subproject of StartClim: Erste Analysen extremer Wetterereignisse und ihrer Auswirkungen in Osterreich, Vienna, 2003. http://www.austroclim.at/index.php?id=startclim2003

[26]   European Environment Agency EEA, “Regional Climate Change and Adaptation—The Alps Facing the Challenge of Changing Water Resources,” EEA Report No. 8/2009, ISSN 1725-9177, Copenhagen, 2009.

[27]   P. Racsko, L. Szeidl and M. Semenov, “A Serial Approach to Local Stochastic Weather Models,” Ecological Modelling, Vol. 57, No. 1-2, 1991, pp. 27-41. doi:10.1016/0304-3800(91)90053-4

[28]   M. A. Semenov and E. M. Barrow, “Use of a Stochastic Weather Generator in the Development of Climate Change Scenarios,” Climatic Change, Vol. 35, No. 4, 1997, pp. 397-414. doi:10.1023/A:1005342632279

[29]   M. A. Semenov and P. Stratonovitch, “The Use of Multi-Model Ensembles from Global Climate Models for Impact Assessments of Climate Change,” Climate Research, Vol. 41, No. 1, 2010, pp. 1-14. doi:10.3354/cr00836

[30]   E. Schmid, F. Sinabell and P. Liebhard, “Effects of Reduced Tillage Systems and Cover Crops on Sugar Beet Yield and Quality, Ground Water Recharge and Nitrogen Leaching in the Pannonic Region Marchfeld, Austria,” Pflanzenbauwissenschaften, Vol. 8, No. 1, 2004, pp. 1-9.

[31]   C. Heumesser, S. Fuss, J. Szolgayová, F. Strauss and E. Schmid, “Investment in Irrigation Systems under Precipitation Uncertainty,” Water Resources Management, Vol. 26, No. 11, 2012, pp. 3113-3137. doi:10.1007/s11269-012-0053-x

[32]   F. Strauss, E. Schmid, E. Moltchanova, H. Formayer and X. Wang, “Modeling Climate Change and Biophysical Impacts of Crop Production in the Austrian Marchfeld Region,” Climatic Change, Vol. 111, No. 3, 2012, pp. 641-664. doi:10.1007/s10584-011-0171-0

[33]   B. Stürmer, J. Schmidt, E. Schmid and F. Sinabell, “Implications of Agricultural Bioenergy Crop Production in a Land Constrained Economy—The Example of Austria,” Land Use Policy, Vol. 30, No. 1, 2013, pp. 570-581. doi:10.1016/j.landusepol.2012.04.020

[34]   J. L. Monteith, “Evaporation and Environment,” Symposia of the Society for Experimental Biology, Vol. 19, 1965, pp. 205-234.

[35]   H. L. Penman, “Natural Evaporation from Open, Bare Soil and Grass,” Proceedings of the Royal Society of London, Series A, Vol. 193, No. 1032, 1948, pp. 120-145. doi:10.1098/rspa.1948.0037

[36]   C. H. B. Priestly and R. J. Taylor, “On the Assessment of Surface Heat Flux and Evaporation Using Large Scale Parameters,” Monthly Weather Review, Vol. 100, No. 2, 1972, pp. 81-92. doi:10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2

[37]   G. H. Hargreaves and Z. A. Samani, “Reference Crop Evapotranspiration from Temperature,” Applied Engineering in Agriculture, Vol. 1, No. 2, 1985, pp. 96-99.

[38]   W. Bair and G. W. Robertson, “Estimation of Latent Evaporation from Simple Weather Observations,” Canadian Journal of Plant Science, Vol. 45, No. 3, 1965, pp. 276-284. doi:10.4141/cjps65-051

[39]   C. O. Stockle, J. R. Williams, N. J. Rosenberg and C. A. Jones, “A Method for Estimating the Direct and Climatic Effects of Rising Atmospheric Carbon Dioxide on Growth and Yield of Crops: Part I-Modification of the EPIC Model for Climate Change Analysis,” Agricultural Systems, Vol. 38, No. 3, 1992, pp. 225-238. doi:10.1016/0308-521X(92)90067-X

[40]   C. A. Jones, P. T. Dyke, J. R. Williams, J. R. Kiniry, V. W. Benson and R. H. Griggs, “EPIC: An Operational Model for Evaluation of Agricultural Sustainability,” Agricultural Systems, Vol. 37, No. 4, 1991, pp. 341-350. doi:10.1016/0308-521X(91)90057-H

[41]   Bundesforschungszentrum für Wald BFW, “Digital Soil Map for Austria,” 2009. http://gis.lebensministerium.at/eBOD

[42]   M. Schonhart, E. Schmid and U. Schneider, “Crop Rota —A Crop Rotation Model to Support Integrated Land Use Assessments,” European Journal of Agronomy, Vol. 34, No. 4, 2011, pp. 263-277. doi:10.1016/j.eja.2011.02.004

[43]   United Nations Environment Programme UNEP, “World Atlas of Desertification,” Second Edition, 1997.

[44]   Organization for Economic Co-Operation and Development OECD, “Scoping Paper on Crop Insurance and Farmer Incentives to Adapt to Climate Change,” Joint Working Party on Agriculture and the Environment, 2010.

 
 
Top