ACT  Vol.2 No.3 , September 2013
Microcomputed Tomography Applications in Bone and Mineral Research
Abstract: Microcomputed tomography (μCT) has evolved as a development of simple X-ray imaging into an indispensable technique used in both laboratory research and clinical diagnostics. Commercially available systems are capable of creating images at sub-micrometer resolutions to map out the complex web of trabecular bone in small animals, and offer an accurate measurement of bone mineral density for patients at risk of osteoporotic fractures. This review describes the development of μCT, its ability to analyze bone, and how it can be used alongside other clinical and laboratory techniques. μCT offers a non-destructive alternative for imaging mineralized tissues with no required preparation and can also be utilized with living specimen to track skeletal development.
Cite this paper: Bart, Z. and Wallace, J. (2013) Microcomputed Tomography Applications in Bone and Mineral Research. Advances in Computed Tomography, 2, 121-127. doi: 10.4236/act.2013.23021.

[1]   C. Gauthier, O., et al., “In Vivo Bone Regeneration with Injectable Calcium Phosphate Biomaterial: A Three-Dimensional Micro-Computed Tomographic, Biomechanical and SEM Study,” Biomaterials, Vol. 26, No. 27, 2005, pp. 5444-5453. doi:10.1016/j.biomaterials.2005.01.072

[2]   D. B. Chaffin, et al., “Lumbar Muscle Size and Locations from CT Scans of 96 Women of Age 40 to 63 Years,” Clinical Biomechanics, Vol. 5, No. 1, 1990, pp. 9-16. doi:10.1016/0268-0033(90)90026-3

[3]   E. M. Braunstein, et al., “Computed Tomography and Plain Radiography in Experimental Fracture Healing,” Skeletal Radiology, Vol. 15, No. 1, 1986, pp. 27-31. doi:10.1007/BF00355070

[4]   G. W. Grodstein, “X-Ray Attenuation Coefficients from 10 keV to 100 MeV,” DTIC Document, 1957.

[5]   G. N. Hounsfield, “Computerized Transverse Axial Scanning (Tomography): Part 1. Description of System,” British Journal of Radiology, Vol. 46, No. 552, 1973, pp. 1016-1022. doi:10.1259/0007-1285-46-552-1016

[6]   C. A. Bartlett, “EMI and the CT Scanner,” Harvard Business School Case 383-194, Boston, 1983.

[7]   E. C. Beckmann, “CT Scanning the Early Days,” British Journal of Radiology, Vol. 79, No. 937, 2006, pp. 5-8. doi:10.1259/bjr/29444122

[8]   D. Bowen, et al. “X-Ray Microtomography with Synchrotron Radiation,” Proceedings of SPIE X-Ray Imaging II, San Diego, 12 August 1986. doi:10.1117/12.936625

[9]   S. M. Jorgensen, O. Demirkaya and E. L. Ritman, “Threedimensional Imaging of Vasculature and Parenchyma in Intact Rodent Organs with X-Ray Micro-CT,” American Journal of Physiology-Heart and Circulatory Physiology, Vol. 275, No. 3, 1998, pp. H1103-H1114.

[10]   R. Guldberg, et al., “Analyzing Bone, Blood Vessels, and Biomaterials with Microcomputed Tomography,” Engineering in Medicine and Biology Magazine, Vol. 22, No. 5, 2003, pp. 77-83. doi:10.1109/MEMB.2003.1256276

[11]   X. Yao, et al., “Gender-Dependence of Bone Structure and Properties in Adult Osteogenesis Imperfecta Murine Model,” Annals of Biomedical Engineering, Vol. 41, No. 6, 2013, pp. 1-11.

[12]   M. Ding, et al., “Canine Cancellous Bone Microarchitecture after One Year of High-Dose bisphosPhonates,” Calcified Tissue International, Vol. 72, No. 6, 2003, pp. 737-744. doi:10.1007/s00223-002-2066-6

[13]   L. D. Lunsford, A. E. Rosenbaum and J. Perry, “Stereotactic Surgery Using the ‘Therapeutic’ CT Scanner,” Surgical Neurology, Vol. 18, No. 2, 1982, pp. 116-122. doi:10.1016/0090-3019(82)90369-X

[14]   E. L. Ritman, “Micro-Computed Tomography-Current Status and Developments,” Annual Review of Biomedical Engineering, Vol. 6, 2004, pp. 185-208. doi:10.1146/annurev.bioeng.6.040803.140130

[15]   J. M. Boone, O. Velazquez and S. R. Cherry, “Small-Animal X-Ray Dose from Micro-CT,” Official Journal of the Society for Molecular Imaging, Vol. 3, No. 3, 2004, p. 149.

[16]   J. Hsieh, “Computed Tomography: Principles, Design, Artifacts, and Recent Advances,” SPIE Press, Bellingham, 2009.

[17]   J. Gong, J. Arnold and S. Cohn, “Composition of Trabecular and Cortical Bone,” The Anatomical Record, Vol. 149, No. 3, 1964, pp. 325-331. doi:10.1002/ar.1091490303

[18]   P. Roschger, et al., “Alendronate Increases Degree and Uniformity of Mineralization in Cancellous Bone and Decreases the Porosity in Cortical Bone of Osteoporotic women,” Bone, Vol. 29, No. 2, 2001, pp. 185-191. doi:10.1016/S8756-3282(01)00485-9

[19]   R. Müller, et al., “Morphometric Analysis of Human Bone Biopsies: A Quantitative Structural Comparison of Histological Sections and Micro-Computed Tomography,” Bone, Vol. 23, No. 1, 1998, p. 59. doi:10.1016/S8756-3282(98)00068-4

[20]   P. Zioupos and J. Currey, “Changes in the Stiffness, Strength, and Toughness of Human Cortical Bone with Age,” Bone, Vol. 22, No. 1, 1998, pp. 57-66. doi:10.1016/S8756-3282(97)00228-7

[21]   T. Kohler, et al., “Compartmental Bone Morphometry in the Mouse Femur: Reproducibility and Resolution Dependence of Microtomographic Measurements,” Calcified Tissue International, Vol. 77, No. 5, 2005, pp. 281-290. doi:10.1007/s00223-005-0039-2

[22]   M. J. Paulus, et al., “High Resolution X-Ray Computed Tomography: An Emerging Tool for Small Animal Cancer Research,” Neoplasia (New York), Vol. 2, No. 1-2, 2000, p. 62.

[23]   C. H. Turner and D. B. Burr, “Basic Biomechanical Measurements of Bone: A Tutorial,” Bone, Vol. 14, No. 4, 1993, pp. 595-608. doi:10.1016/8756-3282(93)90081-K

[24]   M. L. Bouxsein, et al., “Guidelines for Assessment of Bone Microstructure in Rodents Using Micro-Computed Tomography,” Journal of Bone and Mineral Research, Vol. 25, No. 7, 2010, pp. 1468-1486. doi:10.1002/jbmr.141

[25]   J. Hsieh, et al., “An Iterative Approach to the Beam Hardening Correction in Cone Beam CT,” Medical Physics, Vol. 27, 2000, p. 23.

[26]   R. J. Jennings, “A Method for Comparing Beam-Hardening Filter Materials for Diagnostic Radiology,” Medical physics, Vol. 15, 1988, p. 588.

[27]   S. A. Goldstein, R. Goulet and D. McCubbrey, “Measurement and Significance of Three-Dimensional Architecture to the Mechanical Integrity of Trabecular Bone,” Calcified Tissue International, Vol. 53, 1993, pp. 127-133. doi:10.1007/BF01673421

[28]   J. E. M. Brouwers, B. van Rietbergen and R. Huiskes, “No Effects of in Vivo Micro-CT Radiation on Structural Parameters and Bone Marrow Cells in Proximal Tibia of Wistar Rats Detected after Eight Weekly Scans,” Journal of Orthopaedic Research, Vol. 25, No. 10, 2007, pp. 1325-1332. doi:10.1002/jor.20439

[29]   J. Waarsing, et al., “Detecting and Tracking Local Changes in the Tibiae of Individual Rats: A Novel Method to Analyse Longitudinal in Vivo Micro-CT Data,” Bone, Vol. 34, No. 1, 2004, pp. 163-169. doi:10.1016/j.bone.2003.08.012

[30]   J. Day, et al., “Bisphosphonate Treatment Affects trAbecular Bone Apparent Modulus through Micro-Architecture Rather Than Matrix Properties,” Journal of Orthopaedic Research, Vol. 22, No. 3, 2004, pp. 465-471. doi:10.1016/j.orthres.2003.05.001

[31]   J. M. Wallace, et al., “The Mechanical Phenotype of Biglycan-Deficient Mice Is Bone- and Gender-Specific,” Bone, Vol. 39, No. 1, 2006, pp. 106-116. doi:10.1016/j.bone.2005.12.081

[32]   E. Ferrié, et al., “Fatigue Crack Propagation: In Situ Visualization Using X-Ray Microtomography and 3D Simulation Using the Extended Finite Element Method,” Acta Materialia, Vol. 54, No. 4, 2006, pp. 1111-1122. doi:10.1016/j.actamat.2005.10.053

[33]   J. Damilakis, et al., “Radiation Exposure in X-Ray-Based Imaging Techniques Used in Osteoporosis,” European Radiology, Vol. 20, No. 11, 2010, pp. 2707-2714. doi:10.1007/s00330-010-1845-0

[34]   S. M. Cadarette, et al., “Development and Validation of the Osteoporosis Risk Assessment Instrument to facilitate Selection of Women for Bone Densitometry,” Canadian Medical Association Journal, Vol. 162, No. 9, 2000. pp. 1289-1294.

[35]   J. Haarbo, et al., “Validation of Body Composition by Dual Energy X-Ray Absorptiometry (DEXA),” Clinical Physiology (Oxford, England), Vol. 11, No. 4, 1991. pp. 331. doi:10.1111/j.1475-097X.1991.tb00662.x

[36]   T. Lang, et al., “Volumetric Quantitative Computed Tomography of the Proximal Femur: Precision and Relation to Bone Strength,” Bone, Vol. 21, No. 1, 1997, pp. 101-108. doi:10.1016/S8756-3282(97)00072-0

[37]   A. Prentice, T. J. Parsons and T. J. Cole, “Uncritical Use of Bone Mineral Density in Absorptiometry May Lead to Size-Related Artifacts in the Identification of Bone Mineral Determinants,” The American Journal of Clinical Nutrition, Vol. 60, No. 6, 1994, pp. 837-842.

[38]   R. I. Gafni and J. Baron, “Overdiagnosis of Osteoporosis in Children Due to Misinterpretation of Dual-Energy X-Ray Absorptiometry (DEXA),” The Journal of Pediatrics, Vol. 144, No. 2, 2004, pp. 253-257. doi:10.1016/j.jpeds.2003.08.054

[39]   A. Muller, E. Ruegsegger and P. Ruegsegger, “Peripheral QCT: A Low-Risk Procedure to Identify Women Predisposed to Osteoporosis,” Physics in Medicine and Biology, Vol. 34, No. 6, 1989, p. 741. doi:10.1088/0031-9155/34/6/009

[40]   J. A. Gasser, “Assessing Bone Quantity by pQCT,” Bone, Vol. 17, No. 4, 1995, pp. S145-S154. doi:10.1016/8756-3282(95)00287-N

[41]   R. E. Guldberg, et al., “Microcomputed Tomography Imaging of Skeletal Development and Growth,” Birth Defects Research Part C: Embryo Today: Reviews, Vol. 72, No. 3, 2004, pp. 250-259. doi:10.1002/bdrc.20016

[42]   J. R. Mayo, J. Aldrich and N. L. Müller, “Radiation Exposure at Chest CT: A Statement of the Fleischner Society,” Radiology, Vol. 228, No. 1, 2003, pp. 15-21. doi:10.1148/radiol.2281020874

[43]   D. J. Brenner and C. D. Elliston, “Estimated Radiation Risks Potentially Associated with Full-Body CT Screening,” Radiology, Vol. 232, No. 3, 2004, pp. 735-738. doi:10.1148/radiol.2323031095

[44]   W. Huda and R. Morin, “Patient Doses in Bone Mineral Densitometry,” British Journal of Radiology, Vol. 69, No. 821, 1996, pp. 422-425. doi:10.1259/0007-1285-69-821-422

[45]   M.-H. Lafage-Proust, et al., “Bone Vascularization and Remodeling,” Joint Bone Spine, Vol. 77, No. 6, 2010, pp. 521-524. doi:10.1016/j.jbspin.2010.09.009

[46]   B. Roche, et al., “Structure and Quantification of Microvascularisation within Mouse Long Bones: What and How Should We Measure? Bone, Vol. 50, No. 1, 2012, pp. 390-399. doi:10.1016/j.bone.2011.09.051

[47]   S. H. Cartmell, et al., “Effects of Medium Perfusion Rate on Cell-Seeded Three-Dimensional Bone Constructs in Vitro,” Tissue Engineering, Vol. 9, No. 6, 2003, pp. 1197-1203. doi:10.1089/10763270360728107

[48]   S. J. Shefelbine, et al., “Prediction of Fracture Callus Mechanical Properties Using Micro-CT Images and Voxel-Based Finite Element Analysis,” Bone, Vol. 36, No. 3, 2005, pp. 480-488. doi:10.1016/j.bone.2004.11.007

[49]   D. C. Wirtz, et al., “Critical Evaluation of Known Bone Material Properties to Realize Anisotropic FE-Simulation of the Proximal Femur,” Journal of Biomechanics, Vol. 33, No. 10, 2000, pp. 1325-1330. doi:10.1016/S0021-9290(00)00069-5

[50]   C. Hall, et al., “Synchrotron Energy-Dispersive X-Ray Diffraction Tomography,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 140, No. 1, 1998, pp. 253-257. doi:10.1016/S0168-583X(97)00994-4

[51]   Y. Y. Ding, et al., “Validation of BioDent TDI as a New Clinical Diagnostic Method,” Advanced Materials Research, Vol. 275, 2011, pp. 151-154. doi:10.4028/

[52]   A. Diez-Perez, et al., “Microindentation for in Vivo Measurement of Bone Tissue Mechanical Properties in Humans,” Journal of Bone and Mineral Research, Vol. 25, No. 8, 2010, pp. 1877-1885. doi:10.1002/jbmr.73