AHS  Vol.2 No.3 , September 2013
On the Conceptual and Civilization Frames in René Descartes’ Physical Works
ABSTRACT
The paper try to provide a contribution to the scientific—historiographic debate concerning the relations between experiments, metaphysics and mathematics in Descartes’ physics. The three works on which the analysis is focused are the Principia philosophiae and the two physical essays: La Dioptrique and Les Météores. The authors will highlight the profound methodological and epistemological differences characterizing, from one side, the Principia and, from the other side, the physical essays. Three significant examples will be dealt with: 1) the collision rules in the Principia philosophiae; 2) the refraction law in La Dioptrique; 3) the rainbow in Les Météores. In the final remarks these differences will be interpreted as depending upon the different role Descartes ascribed to the three books inside his whole work. The concepts of intensity and gradation of the physical quantities used by Descartes will provide an important interpretative means. In this paper, we compare the aprioristic approach to physics typical for Descartes’ Principia with the experimental and mathematical one characterizing Descartes’ Essays.

Cite this paper
Bussotti, P. & Pisano, R. (2013). On the Conceptual and Civilization Frames in René Descartes’ Physical Works. Advances in Historical Studies, 2, 106-125. doi: 10.4236/ahs.2013.23015.
References
[1]   Armogathe, J. R. (2000). The rainbow: A privileged epistemological model. In: S. Gaukroger, J. Schuster, & J. Sutton (Eds.) (2000) Descartes’ natural philosophy (pp. 249-257).

[2]   Barbin, E., & Pisano, R. (2013). The dialectic relation between physics and mathematics in the xixth century. Dordrecht: Springer.

[3]   Blay, M. (1983). La conceptualisation newtonienne des phénomènes de la couleur. Paris: Vrin.

[4]   Blay, M. (1992). La naissance de la mécanique analytique la science du mouvement au tournant des XVIIe et XVIIIe siècles. Paris: Presses Universitaires de France.

[5]   Blay, M. (2002). La science du mouvement de Galilée à lagrange. Paris: Belin.

[6]   Boutroux, P. (1921). L’histoire des principes de la dynamique avant Newton. Revue de Métaphysique et de Morale, 28, 657-688.

[7]   Buchwald, J. Z., & Feingold, M. (2011). Newton and the origin of civilization. Princeton, NJ: The Princeton University Press.

[8]   Braunstein, J. F. (2008). L’histoire des sciences: Méthodes, styles et controverses. Paris: Vrin.

[9]   Buchwald, J. Z. (1989). The rise of the wave theory of light: Optical theory and experiment in the early nineteenth century. Chicago: The University of Chicago Press.

[10]   Carnot, L. (1803). Principes fondamentaux de l’équilibre et du mouvement. Paris: Deterville.

[11]   Cassirer, E. ([1906] 1922). Das erkenntnisproblem in der philosophie und wissenschaft der neuern zeit. Berlin: Bruno Cassirer.

[12]   Costabel, P. ([1967] 1982). Demarches originales de descartes savant. Paris: Vrin.

[13]   Costabel, P. (1960). Leibniz et la dynamique: Les textes de 1692. Histoire de la pensée. Paris: Hermann.

[14]   Darrigol, O. (2012). A history of optics: From Greek antiquity to the nineteenth century. Oxford: The Oxford University Press.

[15]   Dear, P. (1987). Jesuit mathematical science and the reconstitution of experience in the early seventeenth century. Studies in the History and Philosophy of Science, 18, 133-175. doi:10.1016/0039-3681(87)90016-1

[16]   Dear, P. (1995). Discipline & experience. The mathematical way in the scientific revolution. Chicago, London: The University of Chicago Press. doi:10.7208/chicago/9780226139524.001.0001

[17]   De Gandt, F. (1995). Force and geometry in Newton’s principia. Princeton, NJ: The University of Princeton Press.

[18]   Descartes, R. (1897-1913) OEuvres de Descartes. 12 vols. Adams C, Tannery P (eds). Paris; Discours de la méthode et Essais, Specimina philosophiae. vol VI Principia philosophiae, Latin version vol VIII, Principia philosophiae French translation vol IX; Physico-mathematica vol X, Le Monde ou Traité de la lumière, vol XI (Id, 1964-1974 par Rochot B, Costabel P, Beaude J et Gabbery A, Paris).

[19]   Descartes, R. (1964-1974). Oeuvres. Adam J et Tannery A. Nouvelle présentation par Rochet E, et Costabel P, 11 vols. Paris: Vrin.

[20]   Descartes, R. (1983). Opere scientifiche. Vol 2. Lojacono E (ed). Discorso sul metodo, la diottrica, le meteore, la geometria. Torino: UTET.

[21]   Dijksterhuis, E. J. (1961). The mechanization of the world picture. London: The Oxford University Press.

[22]   Dijksterhuis, E. J., Serrurier, C., & Dibon, P. ([1950] 1977). Descartes et le cartesianisme hollandais. Paris: Presses Universitaire de France.

[23]   Dugas, R. ([1950] 1955). Histoire de la mécanique. Neuchatel: Editions du Griffon.

[24]   Dugas, R. ([1954] 1987). La pensée mécanique de Descartes. In: G. Rodis Lewis (Ed.), La science chez descartes (pp. 145-162). New York and London: Garland Publishing.

[25]   Duhem, P. M. (1977). Aim and structure of physical theory. Princeton, NJ: Princeton University Press.

[26]   Faraday, M. (1839-1855). Experimental researches in electricity, 3 vols. London: Taylor.

[27]   Festa, E. (1995). L’erreur de Galilée. Paris: Austral.

[28]   Feyerabend, P. (1991). Dialogues sur la connaissance. Paris: Seuil.

[29]   Feyerabend, P. K. (1975). Againts the method. London: New Left Books.

[30]   Gaukroger, Schuster, J., & Sutton, J. (2000). (pp. 60-80).

[31]   Gaukroger, S., Schuster, J., & Sutton, J. (2000). Descartes’ natural philosophy. London and New York: Routledge.

[32]   Gillispie, C. C., & Pisano, R. (2013). Lazare and sadi carnot. A scientific and filial relationship. Dordrecht: Springer. doi:10.1007/978-94-007-4144-7

[33]   Gorokhov, V. (2011). Scientific and technological progress by Galileo. In H. Busche (Ed.), Departure for modern Europe. A Handbook of early modern philosophy (1400-1700) (pp. 135-147). Hamburg: Felix Meiner.

[34]   Hall, A. R. (1993). All was light. An introduction to Newton’s optick. Oxford: The Clarendon Press.

[35]   Halley, E. (1693). An instance of the excellence of the modern algebra in the resolution of the problem of the foci of Optik Glasses Universally. Philosophical Transaction, 17, 960-969. doi:10.1098/rstl.1693.0074

[36]   Hatfield, G. C. (1979). Force (God) in Descartes’ physics. Studies in History and Philosophy of Science, 10, 113-140. doi:10.1016/0039-3681(79)90013-X

[37]   Hattab, H. (2009). Descartes on forms and mechanisms. Cambridge: The Cambridge University Press.

[38]   Heilbron, J. L. (1979). Electricity in the 17th and 18th centuries: A study of early modern physics. Berkeley, CA: The University of California Press.

[39]   Jammer, M. (1961). Concepts of mass in classical and modern physics. Cambridge, MA: The Harvard University Press.

[40]   Kokowski, M. (2004). Copernicus’s originality: Towards integration of contemporary copernican studies. Warsaw-Cracow: Instytut Historii Nauki. Polish Academy of Science. Wydawnictwa IHN PAN.

[41]   Kokowski, M. (2012). The different strategies in the historiography of science. Tensions between professional research and postmodern ignorance. In A. Roca-Rosell (Ed.), The circulation of science and technology. Proceedings of the 4th international conference of the European society for the history of science (pp. 27-33). Barcelona: Societat Catalana d‘Història de la Ciència i de la Tècnica (SCHCT). http://taller.iec.cat/4iceshs/documentacio/P4ESHS.pdf

[42]   Koyré, A. (1934). Nicolas copernic, des révolutions des orbes celeste. Paris: Alcand.

[43]   Koyré, A. (1957). From the closed world to the infinite universe. Baltimore: The Johns Hopkins University Press.

[44]   Koyré, A. (1961). Du monde de “à-peu-près” à l’univers de là précision. Paris: M Leclerc et Cie-Armand Colin Librairie. (Id, Les philosophes et la machine. Du monde de l’ “à-peu-près” à l’univers de la précision. études d’histoire de la pensée philosophique)

[45]   Koyré, A. (1971). études d’Histoire de la pensée philosophique. Paris: Gallimard.

[46]   Koyré, A. (1965). Newtonian studies. Cambridge, MA: The Harvard University Press.

[47]   Koyré, A. (1966). études galiléennes. Paris: Hermann.

[48]   Kragh, H. (1987). An introduction to the historiography of science. Cambridge: The Cambridge University Press. doi:10.1017/CBO9780511622434

[49]   Kuhn, T. S. ([1962] 1970). The structure of scientific revolutions. Chicago, IL: The Chicago University Press.

[50]   Lagrange, J. L. (1788). Mécanique analytique. Paris: Desaint.

[51]   Lagrange, J. L. (1973). ?uvres de Lagrange. Seconde édition. Courcier, I-XIV vols. (in X). Paris: Gauthier-Villars.

[52]   Lindsay, R., Margenau, B., & Margenau, H. (1946). Foundations of physics. New York: John Wiley & Sons.

[53]   Mach, E. (1883 [1996]). The science of mechanics—A critical and historical account of its development. 4th edition. La Salle: Open Court-Merchant Books.

[54]   Mach, E. (1986). Principles of the theory of heat, historically and critically elucidated. B. McGuinness (ed.), (vol. 17). Boston, MA: Reidel D Publishing Co.

[55]   Maitte, B. (1981). La lumière. Paris: Seuil.

[56]   Maitte, B. (2006). Histoire de l’arc–en–ciel. Paris: Suil.

[57]   Malet, A. (1990). Gregoire, Descartes, Kepler and the law of refraction. Archives Internationales d’Histoire des Sciences, 40, 278-304.

[58]   Maxwell, J. C. (1873). A treatise on electricity and magnetism. Oxford: The Clarendon Press.

[59]   McLaughlin, P. (2000). Force, determination and impact. In Gaukroger S., Schuster, J., & J. Sutton (Eds.) (2000) (pp. 81-112).

[60]   Nagel, E. (1961). The structure of science: Problems in the logic of scientific explanation. New York: Harcourt-Brace & World Inc.

[61]   Nagel, T. (1997). The last word. Oxford: The Oxford University Press.

[62]   Newton, I. ([1713] 1729). Philosophiae naturalis principia mathematica. London: Motte.

[63]   Newton, I. ([1686-7] 1803). The mathematical principles of natural philosophy. London: Symonds.

[64]   Newton, I. (1666). De gravitatione et aequipondio fluidorum. Ms Add. 4003. Cambridge: The Cambridge University Library. http://www.newtonproject.sussex.ac.uk/view/texts/normalized/THEM00093

[65]   Newton, I. (1803) The mathematical principles of natural philosophy. London: Symonds.

[66]   Newton, I. ([1704] 1730). Opticks: Or, a treatise of the reflections, refractions, inflections and colours of light. 4th edition. London: William Innys.

[67]   Osler, M. J. (2000). Rethinking the scientific revolution. Cambridge: The Cambridge University Press.

[68]   Panza, M. (2003). The origins of analytic mechanics in the 18th century. In H. N. Jahnke (Ed.), A history of analysis. Proceedings of the American Mathematical Society and The London Mathematical Society (pp. 137-153). London.

[69]   Panza, M. (2004). Newton. Paris: Belles Lettres.

[70]   Panza, M. (2005). Revision of Italian translation of Descartes’ correspondence on mathematical matters with addition of some critical notes: René Descartes, Tutte le lettere, 1619-1950. In G. Belgioioso (Ed.), Critical notes (pp. 103-105, 254, 482-491, 556-557, 663-669). Milano: Bompiani.

[71]   Panza, M. (2007). Euler’s introductio in analysin infinitorum and the program of algebraic analysis: Quantities, functions and numerical partitions. In R. Backer (Ed.), Euler reconsidered. Tercentenary essays (pp. 119-166). Heber City, UT: The Kendrick Press.

[72]   Panza, M., & Malet, A. (2006). The origins of Algebra: From Al-Khwarizmi to Descartes. Special issue of Historia Mathematica 33/1.

[73]   Pisano, R. (2013). Historical reflections on physics mathematics relationship in Electromagnetic theory. In E. Barbin, & R. Pisano (Eds.), The dialectic relation between physics and mathematics in the 19th century (pp. 31-58). Dordrecht: Springer.

[74]   Pisano, R. (2009a). On method in Galileo Galilei’ mechanics. In H. Hunger (Ed.), Proceedings of ESHS 3rd conférence (pp. 147-186). Vienna: Austrian Academy of Science.

[75]   Pisano, R. (2009b). Continuity and discontinuity. On method in Leonardo da Vinci’ mechanics. Organon, 41, 165-182.

[76]   Pisano, R. (2010). On principles in Sadi Carnot’s thermodynamics (1824). Epistemological reflections. Almagest, 2, 128-179.

[77]   Pisano, R. (2011). Physics-mathematics relationship. Historical and epistemological notes. In E. Barbin, M. Kronfellner, & C. Tzanakis, (Eds.), European Summer University History And Epistemology In Mathematics (pp. 457-472). Vienna: Verlag Holzhausen GmbH-Holzhausen Publishing Ltd.

[78]   Pisano, R., & Bussotti, P. (2012). Galileo and Kepler. On theoremata circa centrum gravitates solidorum and mysterium cosmographicum. History Research, 2, 110-145.

[79]   Pisano, R., & Gaudiello, I. (2009a). Continuity and discontinuity. An epistemological inquiry based on the use of categories in history of science. Organon, 41, 245-265.

[80]   Pisano, R., & Gaudiello, I. (2009b). On categories and scientific approach in historical discourse. In H. Hunger (Ed.), Proceedings of ESHS 3rd Conference (pp. 187-197). Vienna: Austrian Academy of Science.

[81]   Poincaré, H. ([1923]1970). La valeur de la science. Paris: Flammarion.

[82]   Poincaré, H. ([1935]1968). La science et l'hypothèse. Paris: Flammarion.

[83]   Rashed, R. (1992). Optique et mathématiques. Recherches sur l’histoire de la pensée scientifique en arabe. Aldershot: Variorum.

[84]   Ronchi, V. (1956). Histoire de la lumière. Paris: Colin.

[85]   Rosmorduc, J., Rosmorduc, V., & Dutour, F. (2004). Les révolutions de l’optique et l’?uvre de Fresnel. Location: Adapt-Vuiber.

[86]   Rossi, P. (1999). Aux origines de la science moderne. Paris: Seuil-Points/Sciences.

[87]   Ruffner, J. A. (2012). Newton’s de gravitatione: A review and reassessment. Archive for History of exact Sciences, 66, 241-264. doi:10.1007/s00407-012-0093-x

[88]   Sabra, A. I. (1967). Theories of light from Descartes to Newton. London: Oldbourne,

[89]   Schuhl, P. M. (1947). Machinisme et philosophie. Paris: Vrin.

[90]   Schuster, J. A. (2000). Descartes opticien: The construction of the law of refraction and the manufacture of its physical rationales, 1618-1629. In Gaukroger, J. Schuster, & J. Sutton (2000) (pp. 258-312).

[91]   Schuster, J. A. (2013). Descartes-Agonistes. Physico-mathematics, Method and Corpuscular-Mechanism 1618-1633. Dordrecht: Springer.

[92]   Scott, J. F. [1952] 1987). The scientific work of René Descartes. New York: Garland Publishing.

[93]   Shapiro, A. E. (1974). Light, pressure, and rectilinear propagation: Descartes’ celestial optics and Newton’s hydrostatics. Studies in History and Philosophy of science, 5, 239-296. doi:10.1016/0039-3681(74)90002-8

[94]   Slowik, E. (2009). Descartes’ physics. E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Stanford, CA: The Stanford University Press.

[95]   Taton, R. (1965). Alexandre Koyré, historien de la ? révolution astronomique. Revue d'histoire des sciences et de leurs applications, 18, 147-154. doi:10.3406/rhs.1965.2411

[96]   Taton, R. (1966). Histoire générale des sciences. 5 vols. Paris: PUF, Quadrige.

[97]   Tiemersma, D. (1988). Methodological and theoretical aspects of Descartes’ treatise on the rainbow. Studies in History and Philosophy of science, 19, 347-364. doi:10.1016/0039-3681(88)90004-0

[98]   Truesdell, C. (1968). Essay in the history of mechanics. New York: Springer. doi:10.1007/978-3-642-86647-0

[99]   Westfall, R. S. (1971). The construction of modern science. Mechanism and mechanic. New York: Wiley & Sons Inc.

 
 
Top