CSTA  Vol.2 No.3 , September 2013
ZnO Heteroepitaxy on Sapphire Using a Novel Buffer Layer of Titanium Oxide: Optoelectronic Behavior
Abstract: Optoelectronic property of ZnO epitaxial layer grown by plasma-assisted epitaxy at temperature as low as 340°C using Ti2O3 buffer layer on a-sapphire were studied by low temperature photoluminescence at 10 K comparing to the layers on c-sapphire and a-sapphire without the buffer layer. The near band-edge emission consisting of free-exciton emissions and neutral-donor bound exciton emissions was significantly dependent on the buffer thickness and dominated by the free-exciton emissions in the layer grown on the very thin buffer layer about 0.8 nm, whereas the intense emissions by neutral-donor bound excitons were observed in the ZnO layer on c-sapphire. The structural behavior indicated the donor was originated from the three-dimensional growth of ZnO layer and details of the optoelectronic feature suggested the residual donors were Al and interstitial-Zn.
Cite this paper: S. Yamauchi and Y. Imai, "ZnO Heteroepitaxy on Sapphire Using a Novel Buffer Layer of Titanium Oxide: Optoelectronic Behavior," Crystal Structure Theory and Applications, Vol. 2 No. 3, 2013, pp. 100-105. doi: 10.4236/csta.2013.23014.

[1]   M. A. L. Johnson, S. Fujita, W. H. Rowland, Jr., W. C. Hughes, J. W. Cook, Jr. and J. F. Schetzina, “MBE Growth and Properties of ZnO on Sapphire and SiC Substrates,” Journal of Electronic Materials, Vol. 25, No. 5, 1996, pp. 855-862. doi:10.1007/BF02666649

[2]   A. B. M. A. Ashrafi, I. Suemune, H. Kumano and S. Tanaka, “Nitrogen-Doped p-Type ZnO Layers Prepared with H2O Vapor-Assisted Metalorganic Molecular-Beam Epitaxy,” Japanese Journal of Applied Physics, Vol. 41, 2002, pp. L1281-L1284. doi:10.1143/JJAP.41.L1281

[3]   R. D. Vispute, V. Talyansky, Z. Trajanovic, S. Choopun, M. Downes, R. P. Sharma, T. Venkatesan, M. C. Woods, R. T. Lareau and K. A. Jones, “High Quality Crystalline ZnO Buffer Layers on Sapphire (001) by Pulsed Laser Deposition for III-V Nitrides,” Applied Physics Letters, Vol. 70, No. 20, 1997, pp. 2735-2737. doi:10.1063/1.119006

[4]   S. Yamauchi, H. Handa, A. Nagayama and T. Hariu, “Low Temperature Epitaxial Growth of ZnO Layer by Plasma-Assisted Epitaxy,” Thin Solid Films, Vol. 345, No. 1, 1999, pp. 12-17. doi:10.1016/S0040-6090(99)00096-6

[5]   S. Yamauchi, T. Ashiga, A. Nagayama and T. Hariu, “Plasma-Assisted Epitaxial Growth of ZnO Layer on Sapphire,” Journal of Crystal Growth, Vol. 214-215, 2000, pp. 63-67. doi:10.1016/S0022-0248(00)00060-9

[6]   S. Yamauchi, Y. Goto and T. Hariu, “Photoluminescence Studies of Undoped and Nitrogen-Doped ZnO Layers Grown by Plasma-Assisted Epitaxt,” Journal of Crystal Growth, Vol. 260, No. 1-2, 2004, pp.1-6. doi:10.1016/j.jcrysgro.2003.08.002

[7]   D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason and G. Gantwell, “Characterization of Homoepitaxial p-Type ZnO Grown by Molecular Beam Epitaxy,” Applied Physics Letters, Vol. 81, No. 10, 2002, pp. 1830-1832. doi:10.1063/1.1504875

[8]   B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck and A. V. Rodina, “Bound Exciton and Donor-Acceptor Pair Recombinations in ZnO,” Physica Status Solidi (B), Vol. 241, No. 2, 2004, pp. 231-260.

[9]   L. S. Vlasenko and G. D. Watkins, “Intrinsic Defects in ZnO: A Study Using Optical Detection of Electron Paramagnetic Resonance,” Physica B, Vol. 376-377, 2006, pp. 677-681. doi:10.1016/j.physb.2005.12.170

[10]   S. Yamauchi and Y. Imai, “ZnO Heteroepitaxy on Sapphire Using a Novel Buffer Layer of Titanium Oxide: Crystallographic Behavior,” Crystal Structure Theory and Applications, Vol. 2, No. 2, 2013, pp. 39-45.

[11]   S. S. Kurbanov and T. W. Kang, “Spectral Behavior of the Emission Around 3.31 eV (A-Line) from ZnO Nanocrystals,” Journal of Luminescence, Vol. 130, No. 5, 2010, pp. 767-770. doi:10.1016/j.jlumin.2009.11.030

[12]   A. Teke ü. Ozgür, S. Dogan, X. Gu, H. Morkoc, B. Nemeth, J. Nause, H. O. Everitt, “Excitonic fine Structure and Recombination Dynamics in Single-Crystalline ZnO,” Physical Review B, Vol. 70, No. 19, 2004, Article ID. 195207-1-10.

[13]   D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, T. C. Collins, W. Harsch and G. Cantwell, “Neutral-Donor-Bound-Exciton Complexes in ZnO Crystals,” Physical Review B, Vol. 57, 1998, pp. 12151-12155. doi:10.1103/PhysRevB.57.12151

[14]   H. Alves, D. Pfisterer, A. Zeuner, T. Riemann, J. Christen, D. M. Hofmann and B. K. Meyer, “Optical Investigations on Excitons Bound to Impurities and Dislocations in ZnO,” Optical Materials, Vol. 23, No. 1-2, 2003, pp. 33-37. doi:10.1016/S0925-3467(03)00055-7

[15]   B. Gil, “Oscillator Strengths of A, B, and C Excitons in ZnO Films,” Physical Review B, Vol. 64, 2001, Article ID. 201310-1-3. doi:10.1103/PhysRevB.64.201310

[16]   B. K. Meyer, J. Sann, S. Lautenschlager, M. R. Wagner and A. Hoffmann, “Ionized and Neutral Donor-Bound Excitons in ZnO,” Physical Review B, Vol. 76, 2007, Article ID. 184120-1-10. doi:10.1103/PhysRevB.76.184120

[17]   H. Shibata, M. Watanabe, M. Sakai, K. Oka, P. Fons, K. Iwata, A. Yamada, K. Matsubara, K. Sakurai, H. Tampo, K. Nakahara and S. Niki, “Characterization of ZnO Crystals by Photoluminescence Spectroscopy,” Physica Status Solidi (C), Vol. 1, No. 4, 2004, pp. 872-875.