[1] U. Sarkans, H. Parkinson, G. G. Lara, A. Oezcimen, A. Sharma, N. Abeygunawardena, S. Contrino, E. Holloway, P. Rocca- Serra, G. Mukherjee, M. Shojatalab, M. Kapushesky, S. A. San-sone, A. Farne, T. Rayner and A. Brazma. (2005) The ArrayEx-press gene expression database: a software engineering and im-plementation perspective. Bioinformatics 21(8): 1495- 1501.
[2] T. Barrett and R. Edgar. (2006) Mining Microarray Data at NCBI’s Gene Expression Omnibus (GEO). Methods Mol Biol 338: 175-190.
[3] D. Ghosh, Barette, T. R., Rhodes, D. and Chinnaiyan, A. M. (2003). Statistical issues and methods for meta-analysis of mi-croarray data, A case study in prostate cancer. Funct. Integr. Genomics 3, 180-188.
[4] D. R. Rhodes, T. R. Barrette, M. A. Rubin, D. Ghosh and A. M. Chinnaiyan, (2002). Meta-analysis of microarrays: Interstudy validation of gene expression profiles reveals pathway dysregu-lation in prostate cancer. Cancer Res. 62, 4427-4433.
[5] D. R. Rhodes, J. Yu, K. Shanker, N. Deshpande, R. Varambally, D. Ghosh, T. Barrette, A. Pandey and A. M. Chinnaiyan (2004). Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc. Natl. Acad. Sci. USA 101, 9309-9314.
[6] J. Wang, K. R. Coombes, W. E. Highsmith, M. J. Keating and L. V. Abruzzo (2004). Differences in gene expression between B-cell chronic lymphocytic leukemia and normal B cells: A meta-analysis of three microarray studies. Bioinformatics 20, 3166-3178.
[7] S. Draghici, P. Khatri, A. L. Tarca, K. Amin, A. Done, C. Voichita, C. Georgescu and Romero, R. (2007). A systems biol-ogy approach for pathway level analysis. Genome Res. 17, 1537-1545.
[8] J. Stelling, (2004). Mathematical models in microbial systems biology. Curr. Opin. Microbiol. 7, 513-518.
[9] G. Joshi-Tope, M. Gillespie, I. Vasrik, P. D’Eustachio, E. Schmidt, B. de Bone, B. Jassal, G. R. Gopinath, G. R. Wu, L. Matthews, et al. (2005). A knowledgebase of biological path-ways. Nucleic Acids Res. 33, D428-D432.
[10] A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, A. Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander, et al. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide ex-pression profiles. Proc. Natl. Acad. Sci. 102: 15545-15550.
[11] S. Khalid, F. Fraser, M. Khan, P. Wang, X. Liu and S. Li, (2006a). Analysing Microarray Data using the Multi-functional Immune Ontologiser. J. Integrative Bioinformatics 3, 25.
[12] S. Khalid, M. Khan, P. Wang, X. Liu and S. -L. Li, (2006b). Application of bioinformatics in the design of gene expression microarrays. Second International Symposium on Leveraging Applications of Formal Methods, Verification and Validation (isola 2006), pp. 146-160.
[13] M. Kanehisa, S. Goto, S. Kawashima, Y. Okuno and M. Hattori, (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res, 32.
[14] K. J. Bussey, D. Kane, M. Sunshine, S. Narasimhan, S. Nishi-zuka, W. C. Reinhold, B. Zeeberg, W. Ajay and J. N. Weinstein, (2003) MatchMiner: a tool for batch navigation among gene and gene product identifiers. Genome Biology. 4, R27.
[15] G. F. Berriz and F. P. Roth, The Synergizer service for translat-ing gene, protein, and other biological identifiers. (2008). Bio-informatics. [Epub ahead of print].
[16] GenePix pro 4.1: http://www.axon.com
[17] Acuity 4.0: http://www.moleculardevices.com/pages/software/ gn_acuity.html
[18] M. Safford, S. Collins, M. A. Lutz, A. Allen, C. Huang, J. Kowalski, A. Blackford, M. R. Horton, C. Drake, R. H. Schwartz and J. D. Powell, (2005) Egr-2 and Egr-3 are negative regulators of T cell activation. Nature Immunology 6 472-480.
[19] L. E. Warner, J. Svaren, J. Milbrandt and J. R. Lupski, (1999) Functional consequences of mutations in the early growth re-sponse 2 gene (EGR2) correlate with severity of human myeli-nopathies. Hum. Mol. Genet. 8 1245-1251.
[20] P. O. Anderson, B. A. Manzo, A. Sundstedt, S. Minaee, A. Sy-monds, S. Khalid, M. E. Rodriguez-Cabezas, K. Nicolson, S. Li, D. C. Wraith and P. Wang, (2006) Persistent antigenic stimula-tion alters the transcription program in T cells, resulting in anti-gen-specific tolerance. European Journal of Immunology. 36, 1374-85.
[21] H. Kuipers, F. Muskens, M. Willart, D. Hijdra, F. B. van As-sema, A. J. Coyle, H. C. Hoogsteden and B. N. Lambrecht (2006). Contribution of the PD-1 ligands/PD-1 signaling path-way to dendritic cell-mediated CD4 (+) T cell activation. Euro-pean Journal of Immunology. 36 (9), 2472-82.
[22] Y. Zhang, Y. Chung, C. Bishop, B. Daugherty, H. Chute, P. Holst, C. Kurahara, F. Lott, N. Sun, A. A. Welcher and C. Dong, (2006). Regulation of T cell activation and tolerance by PDL2. Proc Natl Acad Sci U S A, 103(31), 11695-11700.
[23] X. Li, K. Dou, H. Liu, F. Zhang and L. Cai, (2007). Immune tolerance induced by IL-10 and methylprednisolone modified dendritic cells in vitro. Chinese Journal of cellular and molecular Immunol. 23 (5), 436-8.
[24] R. Shamir, A. Maron-Katz, A. Tanay, C. Linhart, I. Steinfeld, R. Sharan, Y. Shiloh and R. Elkon, (2005) EXPANDER-an integra-tive program suite for microarray data analysis. BMC Bioinfor-matics, 6: 232.
[25] G. Thijs, Y. Moreau, F. D. Smet, J. Mathys, M. Lescot, S. Rom-bauts, P. Rouze, B. D. Moor and K. Marchal, (2002) INCLUSive: Integrated Clustering, Upstream sequence retrieval and motif Sampling. Bioinformatics, 18, 331-332.
[26] A. Nikitin, S. Egorov, N. Daraselia and I. Mazo,. (2003) Path-way studio-the analysis and navigation of molecular networks. Bioinformatics, 19, 2155-2157.
[27] BioCarta, Charting pathways of life. http://www.biocarta.com.
[28] S. Khalid, M. Khan, C. B. Gorle, K. Fraser, P. Wang, X. Liu and S. Li, MaXlab: A novel application for the cross comparison and integration of biological signatures from microarray studies. In Silico Biology 8, 0029: 2008.