AHS  Vol.2 No.3 , September 2013
Over and Undershot Waterwheels in the 18th Century. Science-Technology Controversy
Author(s) Danilo Capecchi*
ABSTRACT
The present paper concerns the development of theory and experiments on water wheels in the 18th cen- tury. At that time, as a result of a growing demand for energy, a better understanding of the functioning of watermills, even at the theoretical level, was required in order to improve their efficiency. A hint about the evolution of the theory of wheels in the 19th century is reported also. We have tried to clarify the role played by some protagonists as Antoine Parent, Jean-Charles de Borda and John Smeaton. Their role has not been fully recognised even in contemporary studies. Then some considerations are developed on the relationships between science and technology on this particular subject, concluding that it was a happy and well-balanced marriage.

Cite this paper
Capecchi, D. (2013). Over and Undershot Waterwheels in the 18th Century. Science-Technology Controversy. Advances in Historical Studies, 2, 131-139. doi: 10.4236/ahs.2013.23017.
References
[1]   Belhoste, B. (1994). La formation polytechnicienne: 1794-1994. Paris: Dunod.

[2]   Belidor, B. F. (1782). Architecture hydraulique, ou l’art de conduire, d’élever et de ménager les eaux pour les différens besoins de la vie (1737-1739). Paris: L. Cellot.

[3]   Bernoulli, D. (1738). Hydrodynamica, sive de viribus et motibus fluidorum commentarii. Strasbourgh: Dulsseker J. R.

[4]   Cardwel, D. S. L. (1965). Power technologies and the advance of science. Technology and Culture, 6, 188-207.

[5]   Cardwell, D. S. L. (1967). Some factors in the early development of the concepts of power, work and energy. The British Journal for the History of Science, 3, 209-224. doi:10.1017/S0007087400002661

[6]   Carnot, L. (1786). Essai sur les machines en général (1783). Dijon: Defay.

[7]   Coriolis, G. (1831). Mémoire sur le principe des forces vives dans le mouvements relatifs des machines. Journal école polytechnique, 21, 268-302.

[8]   Coriolis, G. (1835). Sur les équations du mouvement relatif des systèmes de corps. Journal de l’école Polytechnique, 24, 142-154.

[9]   D’Alembert, J. (1758). Traité de dynamique. Paris: David.

[10]   de Borda, J. C. (1770). Sur les roues hydrauliques (pp. 270-287). Memoires de l’Académie des Sciences de Paris.

[11]   De Parcieux, A. (1759). Mémoire dans lequel on démontre que l’eau d’une chute destinée a faire mouvoir quelque machine (pp. 603-605). Histoire de l’Académie Royale des Sciences de Paris, année 1754. Paris: Imprimerie Royale.

[12]   Denny, M. (2003). The efficiency of overshot and undershot waterwheels. European Journal of Physics, 25, 193-202.

[13]   Desaguliers, J. T. (1744). A course of experimental philosophy, vol. 2. London: Innys W. et al.

[14]   Euler, J. A. (1754). Enodatio quaestionis quomodo vis aquae aliusve fluidi cum maximo lucro ad molas circum agendas aliave opera perficienda impdendi possit? Gottingen: Kubler D.F.

[15]   Euler, L. (1754). Maximes pour arranger le plus avantageusement les machines destinées è élever de l’eau par le moyen des pompes (pp. 185-232). Mémoires de l’Académie des Sciences de Berlin. Berlin: Auder et Spenner

[16]   Fourneyron, B. (1840). Memoires sur les turbines hydrauliques. Liege: Leroux.

[17]   Hall, A. R. (1961). Engineering and the scientific revolution. Technology and Culture, 2, 333-341. doi:10.2307/3100888

[18]   Mariotte, E. (1686). Traité des eaux et autres corps fluides. Paris: Estienne Michallet.

[19]   Musson, A. E., & Robinson, E. (1969). Science and technology in the industrial revolution. Manchester: University Press of Manchester.

[20]   Newton, I. (1972). Philosophiae naturalis principia mathematica (3rd ed.). Cambridge: Cambridge University Press.

[21]   Parent, A. (1745). Sur la plus grande perfection possible des machines. Histoire de l’Académie Royale des Sciences de Paris, année 1704. Paris: Martin G., Coignard JB., Guerin HL., pp. 323-338.

[22]   Poncelet, J. V. (1825). Mémoire sur les roues verticales à palettes courbes mues par en dessous, suivi d’expériences sur les effets mécaniques de ces roues. Annales de Chimie et de Physique, 30, 136-188, 225-257.

[23]   Poncelet, J. V. (1827). Mémoire sur les roues verticales à aubes courbes mues par en dessous, suivi d’expériences sur les effets mécaniques de ces roues. Metz: Thiel.

[24]   Reynolds, T. S. (1979). Scientific influences on technology: The case of the overshot waterwheel, 1752-1754. Technology and Culture, 20, 270-295. doi:10.2307/3103867

[25]   Singer et al. (1957). A history of technology, Vol. 3. Oxford: Clarendon Press.

[26]   Smeaton, J. (1759). An experimental enquiry concerning the natural powers of water and wind to turn mills, and other machines, depending on a circular motion. Philosophical Transactions of the Royal Society of London, 51, 100-174. doi:10.1098/rstl.1759.0019

[27]   Smeaton, J. (1776). An experimental examination of the quantity and proportion of mechanic power necessary to be employed in giving different degrees of velocity to heavy bodies from a state of rest. Philosophical Transactions of the Royal Society of London, 66, 450-475. doi:10.1098/rstl.1776.0029

[28]   Smeaton, J. (1782). New fundamental experiments upon the collision of bodies. Philosophical of the Royal Society of London, 72, 337-354.

[29]   Storck J., & Teague W. (1952). Flour for man’s bread: A history of milling. Minneapolis: University of Minnesota Press.

[30]   Syson, L. (1980). The watermills of Britain. London: David and Charles.

[31]   Torricelli, E. (1644). Opera geometrica. Florentiae: Masse & de Landis.

 
 
Top