Solution of the Time Dependent Schrödinger Equation and the Advection Equation via Quantum Walk with Variable Parameters

Show more

References

[1] Y. Aharonov, L. Davidovich and N. Zagury, “Quantum Random Walks,” Physical Review A, Vol. 48, No. 2, 1993, pp. 1687-1690. doi:10.1103/PhysRevA.48.1687

[2] N. Konno, “Mathematics of Quantum Walk,” SangyoTosho, 2008.

[3] P. L. Knight, E. Roldán and J. E. Sipe, “Quantum Walk on the Line as Interference Phenomenon,” Physical Review A, Vol. 68, No. 2, 2003, Article ID: 020301(R).
doi:10.1103/PhysRevA.68.020301

[4] David A. Meyer, “Quantum Mechanics of Lattice gas Automation: One Particle Plane Waves and Potential,” Physical Review E, Vol. 55, No. 5, 1997, pp. 5261-5269.
doi:10.1103/PhysRevE.55.5261

[5] B. M. Boghosian and W. Taylor, “Quantum Lattice-Gas Model for the Many-Particle Schrodinger Equation in d Dimensions,” Physical Review E, Vol. 57, No. 1, 1998, pp. 54-66. doi:10.1103/PhysRevE.57.54

[6] F. W. Strauch, “Relativistic Quantum Walks,” Physical Review A, Vol. 73, No. 6, 2006, Article ID: 069908.
doi:10.1103/PhysRevA.73.069908

[7] A. J. Bracken, D. Ellinas and I. Smyrnakis, “Free-Diracparticle Evolution as a Quantum Random Walk,” Physical Review A, Vol. 75, No. 2, 2007, Article ID: 022322.
doi:10.1103/PhysRevA.75.022322

[8] C. M. Chandrashekar, S. Banerjee andR. Srikanth, “Relationship between Quantum Walks and Relativistic Quantum Mechanics,” Physical Review A, Vol. 81, No. 6, 2010, Article ID: 062340.
doi:10.1103/PhysRevA.81.062340

[9] A. Ahibrecht, H. Vogts, A. H. Werner, and R. F. Werner, “Asymptotic Evolution of Quantum Walks with Random Coin,” Journal of Mathematical Physics, Vol. 52, No. 4, 2011, Article ID: 042201. doi:10.1063/1.3575568

[10] H. Sekino, M. Kawahata and S. Hamada, “A Solution of Time Dependent Schrodinger Equation by Quantum Walk,” Journal of Physics Conference Series (JPCS), Vol. 352, No. , 2012, Article ID: 012013.
doi:10.1088/1742-6596/352/1/012013

[11] I. Daubechies, “Ten Lectures on Wavelets,” SIAM, Philadelphia, 1992. doi:10.1137/1.9781611970104

[12] R. P. Feynman and A. R. Hibbs, “Quantum Mechanics and Path Integrals,” McGraw Hill, 1965.

[13] R. Courant, K. Friedrichs and H. Lewy, “On the Partial Difference Equations of Mathematical Physics,” IBM Journal of Research and Development, Vol. 11, No. 2, 1967, pp. 215-234.

[14] P. Høyer, “Efficient Quantum Transforms,” Unpublished, 1997.
http://arxiv.org/abs/quant-ph/9702028v1