IJOC  Vol.3 No.3 , September 2013
Docking Studies, Synthesis, and Evaluation of Antioxidant Activities of N-Alkylated, 1,2,4-Triazole, 1,3,4-Oxa-, and Thiadiazole Containing the Aminopyrazolopyridine Derivatives
ABSTRACT
Synthesis of some 1,3,4-thia-, oxa-diazol and 1,2,4 triazole incorporated the biologically active and the pyrazolopyri-dine derivative. Molecular modeling and docking of the active compounds into AKR1C3 complexed with its bound inhibitor indomethacin using Molsoft ICM 3.4-8C program were performed in order to predict the affinity and orientation of the synthesized compounds at the active site.

Cite this paper
Y. Abdelmonem, F. El-Essawy, S. Abou El-Enein and M. El-Sheikh-Amer, "Docking Studies, Synthesis, and Evaluation of Antioxidant Activities of N-Alkylated, 1,2,4-Triazole, 1,3,4-Oxa-, and Thiadiazole Containing the Aminopyrazolopyridine Derivatives," International Journal of Organic Chemistry, Vol. 3 No. 3, 2013, pp. 198-205. doi: 10.4236/ijoc.2013.33026.
References
[1]   C. M. S. Menezes, C. M. R. Sant’Anna, C. R. Rodrigues and E. J. Barreiro, “Molecular Modeling of Novel 1H-Pyrazolo[3,4-b]pyridine Derivatives Designed as Isosters of the Antimalarial Mefloquine,” Journal of Molecular Structure: THEOCHEM, Vol. 579, No. 1-3, 2002, pp. 31-39. http://dx.doi.org/10.1016/S0166-1280(01)00677-7

[2]   K. Poreba, A.Oplski and J Wietrezyk, “Synthesis and Antiproliferative Activity in Vitro of New 3-Substituted aminopyrazolo[3,4-b]pyridines” Acta Poloniae Pharmaceutica, Vol. 59, No. 3, 2002, pp. 215-222.

[3]   F. E. Goda, A. A. M. Abdel-Aziz and O. A. Attef, “Synthesis, Antimicrobial Activity and Conformational Analysis of Novel Substituted Pyridines: BF3-Promoted Reaction of Hydrazine with 2-Alkoxy Pyridines,” Bioorganic & Medicinal Chemistry, Vol. 12, No. 8, 2004, pp. 1845-1852. http://dx.doi.org/10.1016/j.bmc.2004.01.040

[4]   F. A. Attaby and A. M. Abd El-Fattah, “A Novel Synthesis of Thienopyridine, Pyrroloquinolinothiophene, Pyrazolopyridin-3-yl Phenylthiourea and Thiazolylpyrazolopyridine Derivatives,” Phosphorus, Sulfur, and Silicon and the Related Elements, Vol. 155, No. 1, 1999, pp. 253-270. http://dx.doi.org/10.1080/10426509908044987

[5]   M. A. A. Elneairy, F. A. Attaby and M. S. Elsayed, “Synthesis of Thiazole, Triazole, Pyrazolo[3,4-b]-Pyridinyl-3-Phenylthiourea, Aminopyrazolo[3,4-b]Pyridine Derivatives and Their Biological Evaluation,” Phosphorus, Sulfur, and Silicon and the Related Elements, Vol. 167, No. 1, 2000, pp. 161-179. http://dx.doi.org/10.1080/10426500008082396

[6]   R. N. Misra, et al., “1H-Pyrazolo[3,4-b]pyridine Inhibitors of Cyclin-Dependent Kinases: Highly Potent 2,6-Difluorophenacyl Analogues,” Bioorganic & Medicinal Chemistry Letters, Vol. 13, No. 14, 2003, pp. 2405-2408. http://dx.doi.org/10.1016/S0960-894X(03)00381-0

[7]   J. P. Stasch, , K. E. DembowskyPerzborn, E. Br. Stahl, M Schramm, “Cardiovascular Actions of a Novel NO-Independent Guanylyl Cyclase Stimulator, Bay 41-8543: In Vivo Studies,” Journal of Pharmacology, Vol. 135, No. 2, 2002, pp. 344-355.

[8]   G. Boerrigter, et al., “Cardiorenal and Humoral Properties of a Novel Direct Soluble Guanylate Cyclase Stimulator BAY 41-2272 in Experimental Congestive Heart Failure,” Circulation, Vol. 107, 2003, pp. 686-689. http://dx.doi.org/10.1161/01.CIR.0000055737.15443.F8

[9]   D. U. Bawankule, et al., “BAY 41-2272 [5-Cyclopropyl2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridine-3-yl]pyrimidin-4-ylamine]-Induced Dilation in Ovine Pulmonary Artery: Role of Sodium Pump,” Journal of Pharmacology and Experimental Therapeutics, Vol. 314, No. 1, 2005, pp. 207-213. http://dx.doi.org/10.1124/jpet.105.083824

[10]   F. A. Attaby, A. H. H. Elghandour, M. A. Ali and Y. M. Ibrahem, “Synthesis, Reactions, and Antiviral Activity of 1-(1H-Pyrazolo[3,4-b]pyridin-5-yl)ethanone and Pyrido [2′,3′:3,4]pyrazolo[5,1-c][1,2,4]triazine Derivatives,” Phosphorus, Sulfur, and Silicon and the Related Elements, Vol. 181, No. 5, 2006, pp. 1087-1102. http://dx.doi.org/10.1080/10426500500326404

[11]   F. A. Attaby, A. H. Elghandour, M. A. Ali and Y. M. Ibrahem, “Synthesis, Characterization, and Antiviral Activities of Pyridopyrazolotriazines,” Phosphorus, Sulfur, and Silicon and the Related Elements, Vol. 182, No. 1, 2007, pp. 133-149. http://dx.doi.org/10.1080/10426500600887313

[12]   A. R. Azevedo, V. F. Ferreira, H. de Mello, L. R. LeaoFerreira, A. V. Jabor, I. C. P. P. Frugulhetti, H. S. Pereira, N. Moussatche and A. M. R. Bernardino, “Synthesis And Biological Evaluation of 1h-Pyrazolo[3,4-b]pyridine-5 Carboxylic Acids against Vaccinia Virus,” Heterocyclic Communications, Vol. 8, No. 5, 2002, pp. 427-423. http://dx.doi.org/10.1515/HC.2002.8.5.427

[13]   H. de Mello, A. Echevarria, A. M. Bernardino, M. Canto-Cavalheiro and L. L. Leon, “Antileishmanial Pyrazolopyridine Derivatives: Synthesis and Structure—Activity Relationship Analysis,” Journal of Medicinal Chemistry, Vol. 47, No. 22, 2004, pp. 5427-5432. http://dx.doi.org/10.1021/jm0401006

[14]   I. Sekikawa, J. Nishie, S. Tono-Oka, Y. Tanaka and S. Kakimoto, “Antituberculous Compounds. XXVIII. Synthesis of Pyrazolopyridines,” Journal of Heterocyclic Chemistry, Vol. 10, No. 6, 1973, pp. 931-932. http://dx.doi.org/10.1002/jhet.5570100607

[15]   M. Amir, M. S. Y Khan and M. S Zaman, “Synthesis, characterization and biological activities of substituted oxadiazole, triazole, thiadiazole and 4-thiazolidinone derivatives,” Indian Journal of Chemistry B, Vol. 43B, No. 10, 2004, pp. 2189-2194.

[16]   B. Tozkoparan, E. Küpeli, E. Yesilada and M. Ertan, “Preparation of 5-aryl-3-alkylthio-l,2,4-triazoles and Corresponding Sulfones with Antiinflammatory—Analgesic Activity,” Bioorganic & Medicinal Chemistry, Vol. 15, No. 4, 2007, pp. 1808-1814. http://dx.doi.org/10.1016/j.bmc.2006.11.029

[17]   F. A. El-Essawy, “Synthesis of Tetrahetrocyclic Systems Including pyrido[2′,3′:3,4]pyrazolo[1,5-a]pyrimidine Fused with Pyrazole Derivatives and Isolated with 1,3,4-oxa-, Thiadiazole, and 1,2,4-Tetrazole Derivatives” Journal of Heterocyclic Chemistry, Vol. 47, No. 2, 2010, pp. 318-323.

[18]   F. A. El-Essawy, “Synthesis of New Pyrido[2′,3′:3,4]pyrazolo[1,5-a]pyrimidines and Their Use in the Preparation of Tetraheterocyclic Systems,” Synthetic Communications, Vol. 40, No. 6, 2010, pp. 877-887. http://dx.doi.org/10.1080/00397910903020783

[19]   S. Gobec, P. Brozic and T. L. Rizner, “Nonsteroidal Anti-Inflammatory Drugs and Their Analogues as Inhibitors of Aldo-Keto Reductase AKR1C3: New Lead Compounds for the Development of Anticancer Agents,” Bioorganic & Medicinal Chemistry Letters, Vol. 15, No. 23, 2005, pp. 5170-5175. http://dx.doi.org/10.1016/j.bmcl.2005.08.063

[20]   A. A. M. Eissa, N. A. H. Farag and G. A. H. Soliman, “Synthesis, Biological Evaluation and Docking Studies of Novel Benzopyranone Congeners for Their Expected Activity as Anti-Inflammatory, Analgesic and Antipyretic Agents,” Bioorganic & Medicinal Chemistry, Vol. 17, No. 14, 2009, pp. 5059-5070. http://dx.doi.org/10.1016/j.bmc.2009.05.073

[21]   L. Labanauskas, V. Kalcas, E. Udrenaite, P. Gaidelis, A. Brukstus and V. Dauksas, “Synthesis of 3-(3,4-dimethoxyphenyl)-1 H-1,2,4-triazole-5-thiol and 2-amino-5-(3, 4-dimethoxyphenyl)-1,3,4-Thiadiazole Derivatives Exhibiting Anti-Inflammatory Activity,” Pharmazie, Vol. 56, No. 8, 2001, pp. 617-619.

[22]   A. L. Lovering, et al., “Crystal Structures of Prostaglandin D2 11-Ketoreductase (AKR1C3) in Complex with the Nonsteroidal Anti-Inflammatory Drugs Flufenamic Acid and Indomethacin,” Cancer Research, Vol. 64, No. 5, 2004, pp. 1802-1810. http://dx.doi.org/10.1158/0008-5472.CAN-03-2847

 
 
Top