[1] Desprez, V. and Labbe, P. (1996) A Kinetic model for the electroenzymatic processd involved in polyphenol-oxidase- based amperometric catechol sensors. Journal of Electroanalytical Chemistry, 415, 191-1995. doi:10.1016/S0022-0728(96)01011-X
[2] Coche-Guerente, L., Labbe, P. and Mengeaud, V. (2001) Amplification of amperometric biosensor responses by electrochemical substrate recycling.3. theoretical and experimental study of the phenol-polyphenol oxidase system immoboilized in laponite hydrogels and layer- by-layer self-assembled structures. Anaytical chemistry, 73, 3206-3218. doi:10.1021/ac001534l
[3] Kronkvist, K., Wallentin, K., Johansson, G. (1994) Selective enzyme amplification of NAD+/NADH using coimmobilized glycerol dehydrogenase and diaphorase with amperometric detection. Analytical chimica Acta, 290-335. doi:10.1016/0003-2670(94)80120-7
[4] Kotte, H., Grundig, B., Vorlop, K. D., Strehlitz, B. and Stottmeister, U. (1995) Methylphenazonium-modified enzyme sensor based on polymer thick films for subnanomolar detection of phenols. Analytical chemistry, 67, 65-70. doi:10.1021/ac00097a011
[5] Wang, J., Lu, J., Ly, S.Y., Vuki, M., Tian, B., Adeniyi, W.K. and Armendariz, R.A. (2000) Lab-on-a-Cable for electrochemical monitoring of phenolic contaminants. Analytical chemistry, 72, 2659-2663. doi:10.1021/ac991054y
[6] Zhenjiu, L., Deng, J. and Li. D. (2000) A new tyrosinase biosensor based on tailoring the porosity of Al2O3 sol-gel to co- immobilize tyrosinase and the mediator. Analytical chimica Acta, 407, 87-96. doi:10.1016/S0003-2670(99)00807-7
[7] Russell, I. M. and Burton, S. G. (1999) Development and demonstration of an immobilised-polyphenol oxidase bioprobe for the detection of phenolic pollutants in water. Analytical chimica Acta, 389, 161-170. doi:10.1016/S0003-2670(99)00143-9
[8] Cosnier. S., Fombon. J.J., Labbe, P. and Limosin, D. (1999) Development of a PPO-poly (amphiphilic pyrrole) electrode for on site monitoring of phenol in aqueous effluents. Sensors and Actuators B, 59, 134-139.
[9] Nistor, C., Emneus, J., Gorton, L. and Ciucu, A. (1999) Improved stability and altered selectivity of tyrosinase based graphite electrodes for detection of phenolic compounds. Analytical chimica Acta, 387, 309-326. doi:10.1016/S0003-2670(99)00071-9
[10] Forzani, E.S., Rivas, G.A. and Solis, V.M. (1999) Kinetic behaviour of dopamine-polyphenol oxidase on electrodes of tetrathiafulvalenium tetracyanoquinodimethanide and tetracyanoquinodimethane species V. M. Journal of Electroanalytical Chemistry, 461, 174-183. doi:10.1016/S0022-0728(98)00119-3
[11] Moore, T.J., Nam, G.G., Pipes, L.C. and Coury Jr, L.A. (1994) Chemically amplified voltammetric enzyme electrodes for oxidizable pharmaceuticals. Analytical Chemistry, 66, 3158-3163. doi:10.1021/ac00091a026
[12] Lisdat, F., Wollenberg, U., Paeschke, M. and Scheller, F.W. (1998) Sensitive catecholamine measurement using a monoenzymatic recycling system. Analytical chimica Acta, 368, 233-241. doi:10.1016/S0003-2670(98)00221-9
[13] Forzani, E.S., Solis, V. and Calvo, E.J. (2000) Electrochemical behavior of polyphenol oxidase immobilized in self-assembled structures layer by layer with cationic polyallylamine. Analytical Chemisty, 72, 5300-5307.
[14] Li, S.J. and Liu, Y.X. (2006) An improved approach to nonlinear dynamical system identification using PID neural networks,” International Journal of NonlinearScience and Numerical Simulation, 7, 177-182.
[15] Mousa, M.M., Ragab, S.F. and Nturforsch, Z. (2008) Application of the homotopy perturbation method to linear and nonlinear schr?dinger equations, Zeitschrift für Naturforschung, 63, 140-144.
[16] He, J.H, Homotopy perturbation technique, Computer Methods in Applied Mechanics and Engineering, Vol. 178 (1999) 257-262. doi:10.1016/S0045-7825(99)00018-3
[17] He, J.H. (2003) Homotopy perturbation method: a new nonlinear analytical Technique. Applied Mathematics and Computation, 135, 73-79. doi:10.1016/S0096-3003(01)00312-5
[18] He, J.H. (2003) A Simple perturbation approach to Blasius equation”, Applied Mathematics and Computation, 140, 217-222. doi:10.1016/S0096-3003(02)00189-3
[19] He, J.H. (2006) Some asymptotic methods for strongly nonlinear equations. International Journal of Modern Physics B, 20, 1141-1199. doi:10.1142/S0217979206033796
[20] He, J.H., Wu, G.C. and Austin, F. (2010) The variational iteration method which should be followed. Nonlinear Science Letters A, 1, 1-30.
[21] He, J.H. (2000) A coupling method of a homotopy technique and a perturbation technique for non-linear problems. Internationl Journal of Nonlinear Mechanics, 35 37-43. doi:10.1016/S0020-7462(98)00085-7
[22] Ganji, D.D., Amini, M. and Kolahdooz, A. (2008) Analytical investigation of hyperbolic Equations via He’s methods. American. Journal of Engineering and Applied Science, 1, 399-407. doi:10.3844/ajeassp.2008.399.407
[23] Bartlett, P.N. and Whitaker, R.G. (1987) Electrochemical immobilisation of enzymes: Part I. Theory, Journal of Electroanalytical Chemistry, 224, 27-35. doi:10.1016/0022-0728(87)85081-7
[24] Toyota, T., Kuan, S.S. and Guilbault, G.G. (1985) Determination of total protein in serum using a tyrosinase enzyme electrode, Anaytical chemistry, 57, 1925-1928. doi:10.1021/ac00286a030
[25] Kulys, J. and Schmid, R.D. (1990) A Sensitive Enzyme Electrode for Phenol Monitoring. Analytical Letters, 23, 589-597.
[26] Wang, J. and Varughese, K. (1990) Polishable and robust biological electrode surfaces. Analytical chemistry,, 62 318-320. doi:10.1021/ac00202a019
[27] Skladal, P. (1991) Mushroom tyrosinase-modified carbon paste electrode as an amperometric biosensor for phenols. Collection of Czechoslovak Chemical Communications, 569, 1427-1433.
[28] Hall, G.F., Best, D.J. and Turner, A.P.F. (1988) The determination of p-cresol in chloroform with an enzyme electrode used in the organic phase. Analytical chimica Acta, 213, 113-119. doi:10.1016/S0003-2670(00)81345-8
[29] Cosiner, S. and Innocent, C. (1992) A novel biosensor elaboration by electropolymerization of an adsorbed amphiphilic pyrrole-tyrosinase enzyme layer. Journal of Electroanalytical Chemistry, 328, 361-366. http://dx.doi.org/10.1016/0022-0728(92)80195-A
[30] Wang, J., Nasser, N., Kwon and Cho, M.Y. (1992) Tissue bioelectrode for organic-phase enzymatic assays, Analytical chimica Acta, 2649, 7-12. doi:10.1016/0003-2670(92)85290-M
[31] Ortega, F., Dominguez, E., Pettersson J. and Gorton, L. (1993) Amperometric biosensor for the determination of phenolic compounds using a tyrosinase graphite electrode in a flow injection system. Journal of Biotechnology, 31, 289-300. doi:10.1016/0168-1656(93)90075-X
[32] Besombes, J. L., Cosnier, S., Labbe, P and Reverdy, G. (1995) Determination of Phenol and Chlorinated Phenolic Compounds Based on a PPO-Bioelectrode and Its Inhibition, Analytical Letters, 28, 405-424.
[33] Lutz, M., Burestedt, E., Emneus, J., Liden, H., Gobhadi, S., Gorton, L. and Marko-Varga, G. (1995) Effects of different additives on a tyrosinase based carbon paste electrode, Analytical chimica Acta, 305, 8-17. doi:10.1016/0003-2670(94)00573-5
[34] Onnerfjord, P., Emneus, J., Marko-Varga, G., Gorton, L., Ortega, F. and Dominguez, E. (1995) Tyrosinase graphite-epoxy based composite electrodes for detection of phenols, Biosensors Bioelectronics, 10, 607-619. doi:10.1016/0956-5663(95)96937-T