JAMP  Vol.1 No.3 , August 2013
Investigation of the Appropriate Partial Level Density Formula for Pre-Equilibrium Nuclear Exciton Model
Abstract: Ericson formula represents the first formula, which was suggested to describe the partial level density (PLD) formula in pre-equilibrium region of the nuclear reactions. Then a number of corrections were added to this formula in order to make it more suitable to physical meaning. In this paper, there are two aims to be done: the first aim is to study the correspondence between one and two-components formulae in Ericson, Pauli, and pairing corrections; the second aim is to compare and study the results of Comprehensive formula, which contents with all corrections, with Ericson, Pauli, and pairing formulae. The Comprehensive formula was suggested to simulate the reality. To achieve these aims the 56Fe and 90Zr nuclei were chosen and the results showed that the difference between one and two-components formulae was too small which can be neglected. Furthermore, the results strongly recommended that for cross section calculations of the nuclear reaction, one must use Comprehensive formula rather than Pauli formula.
Cite this paper: Shafik, S. and Salloum, A. (2013) Investigation of the Appropriate Partial Level Density Formula for Pre-Equilibrium Nuclear Exciton Model. Journal of Applied Mathematics and Physics, 1, 47-54. doi: 10.4236/jamp.2013.13008.

[1]   K. K. Gudima, S. G. Mashnik and V. D. Toneev, “Cascade-Exciton Model of Nuclear Reactions,” Nuclear Physics A, Vol. 401, No. 2, 1983, pp. 329-361. doi:10.1016/0375-9474(83)90532-8

[2]   G. D. Harp, J. M. Miller and B. J. Berne, “Attainment of Statistical Equilibrium in Excited Nuclei,” Physical Review, Vol. 165, No. 4, pp. 1166-1169. doi:10.1103/PhysRev.165.1166

[3]   G. D. Harp and J. M. Miller, “Precompound Decay from Time-Dependent Point of View,” Physical Review C, Vol. 3, No. 5, 1971, pp. 1847-1855. doi:10.1103/PhysRevC.3.1847

[4]   M. Blann, “Importance of Nuclear Density Distribution on Pre-Equilibrium Decay,” Physical Review Letters, Vol. 28, No. 12, 1972, pp. 757-759. doi:10.1103/PhysRevLett.28.757

[5]   M. K. Bhardwaj and I. A. Rizivi, “Alpha-Induced Reactions in Iridium,” Physical Review C, Vol. 45, No. 5, 1992, pp. 2338-2348. doi:10.1103/PhysRevC.45.2338

[6]   J. J. Griffin, “Statistical Model of Intermediate Structure,” Physical Review Letters, Vol. 17, No. 9, 1966, pp. 478-481. doi:10.1103/PhysRevLett.17.478

[7]   C. K. Cline and M. Blann, “The Pre-Equilibrium Statistical Model: Description of the Nuclear Equilibration Process and Parameterization of the Model,” Nuclear Physics A, Vol. 172, No. 2, 1971, pp. 225-259. doi:10.1016/0375-9474(71)90713-5

[8]   C. Kalbach, “Two-Component Exciton Model: Basic Formalism Away From Shell Closures,” Physical Review C, Vol. 33, No. 3, 1986, pp. 818-833. doi:10.1103/PhysRevC.33.818

[9]   E. Beták and P. E. Hodgson, “Particle-Hole State Density in Pre-equilibrium Nuclear Reactions,” University of Oxford, CERN Libraries, Geneva, 1998.

[10]   F. C. Williams Jr., “Particle-Hole State Density in the Uniform Spacing Model,” Nuclear Physics A, Vol. 166 No. 2, 1971, pp. 231-240. doi:10.1016/0375-9474(71)90426-X

[11]   M. Avrigeanu and V. Avrigeanu, “Partial Level Density for Nuclear Data Calculations,” Computer Physics Communications, Vol. 112, No. 2-3, 1998, pp. 191-226.

[12]   W. E. Meyrhof, “Elements of Nuclear Physics,” Mc Grew Hill, New York, 1967, pp. 36,58.

[13]   A. de-Shalit and I. Talmi, “Nuclear Shell Theory,” Academic Press, Waltham, 1963, p. 27.

[14]   A. S. Davydov, “Quantum Mechanics,” Pergamon Press, Oxford, 1969, p. 371.

[15]   C. Kalbach, “Missing Final States and the Spectral Endpoint in Exciton Model Calculations,” Physical Review C, Vol. 73, No. 2, 2006, Article ID: 024614. doi:10.1103/PhysRevC.73.024614

[16]   G. M. Braga-Marcazzan, E. Gadioli-Erba, L. M. Millazo-Colli and P. G. Sona, “Analysis of the Total (n,p) Cross Sections around 14 MeV with the Pre-Equilibrium Exciton Model,” Physical Review C, Vol. 6, No. 4, 1972, pp. 1398-1407. doi:10.1103/PhysRevC.6.1398

[17]   C. Kalbach, “Isospin Dependence of Two-Component Particle-Hole State Density,” Physical Review C, Vol. 30, No. 4, 1984, pp. 1310-1319. doi:10.1103/PhysRevC.30.1310

[18]   C. Kalbach, “Particle-Hole State density with Good Isospin,” Physical Review C, Vol. 47, No. 2, 1993, pp. 587-601. doi:10.1103/PhysRevC.47.587

[19]   C. Kalbach, “Isospin Conversion in Preequilibrium Reactions,” Physical Review C, Vol. 72, No. 2, 2005, Article ID: 024607. doi:10.1103/PhysRevC.72.024607

[20]   C. Kalbach and F. M. Mann, “Phenomenology of Continuum Angular Distributions. I. Systematics and Parametrization,” Physical Review C, Vol. 23, No. 1, 1981, pp. 112-123. doi:10.1103/PhysRevC.23.112

[21]   C. Kalbach, “Phenomenology of Continuum Angular Distributions. II. Griffin Preequilibrium Model,” Physical Review C, Vol. 23, No. 1, pp. 124-135. doi:10.1103/PhysRevC.23.124

[22]   M. B. Chadwick and P. Oblozinsky, “Particle-Hole State Densities with Linear Momentum and Angular Distributions in Preequilibrium Reaction,” Physical Review C, Vol. 46, No. 5, 1992, pp. 2028-2041. doi:10.1103/PhysRevC.46.2028

[23]   S. S. Shafik, “Angular Momentum Distribution for State Density with Non-ESM Dependence,” Journal of Fisica Nucleare, 2009.

[24]   Ye. A. Bogila, V. M. Kolomietz, A. I. Sanzhur and S. Shlomo, “Preequilibrium Decay in the Exciton Model for Nuclear Potential with a Finite Depth,” Physical Review C, Vol. 53, No. 2, 1996, pp. 855-859. doi:10.1103/PhysRevC.53.855

[25]   M. Avrigeanu, A. Harangozo and V. Avrigeanu, “Average Strength of the Effective Interaction in Multistep Direct Reactions,” Physical Review C, Vol. 56, No. 3, 1997, pp. 1633-1636. doi:10.1103/PhysRevC.56.1633

[26]   Y. K. Gupta, D. C. Biswas, Bency John, B. K. Nayak, A. Saxena and R. K. Choudhury, “Nuclear Level-Density Parameters of Nuclei in the Z~70 and A~180 Mid-Shell Regions,” Physical Review C, Vol. 80, No. 5, 2009, Article ID: 054611. doi:10.1103/PhysRevC.80.054611

[27]   H. Nakada and Y. Alhassid, “Publisher’s Note: Isospin-Projected Nuclear Level Densities by the Shell Model Monte Carlo Method,” Physical Review C, Vol. 78, No. 6, 2008, Article ID: 069907. doi:10.1103/PhysRevC.78.069907