Investigation of the Appropriate Partial Level Density Formula for Pre-Equilibrium Nuclear Exciton Model

Show more

References

[1] K. K. Gudima, S. G. Mashnik and V. D. Toneev, “Cascade-Exciton Model of Nuclear Reactions,” Nuclear Physics A, Vol. 401, No. 2, 1983, pp. 329-361.
doi:10.1016/0375-9474(83)90532-8

[2] G. D. Harp, J. M. Miller and B. J. Berne, “Attainment of Statistical Equilibrium in Excited Nuclei,” Physical Review, Vol. 165, No. 4, pp. 1166-1169.
doi:10.1103/PhysRev.165.1166

[3] G. D. Harp and J. M. Miller, “Precompound Decay from Time-Dependent Point of View,” Physical Review C, Vol. 3, No. 5, 1971, pp. 1847-1855.
doi:10.1103/PhysRevC.3.1847

[4] M. Blann, “Importance of Nuclear Density Distribution on Pre-Equilibrium Decay,” Physical Review Letters, Vol. 28, No. 12, 1972, pp. 757-759.
doi:10.1103/PhysRevLett.28.757

[5] M. K. Bhardwaj and I. A. Rizivi, “Alpha-Induced Reactions in Iridium,” Physical Review C, Vol. 45, No. 5, 1992, pp. 2338-2348. doi:10.1103/PhysRevC.45.2338

[6] J. J. Griffin, “Statistical Model of Intermediate Structure,” Physical Review Letters, Vol. 17, No. 9, 1966, pp. 478-481. doi:10.1103/PhysRevLett.17.478

[7] C. K. Cline and M. Blann, “The Pre-Equilibrium Statistical Model: Description of the Nuclear Equilibration Process and Parameterization of the Model,” Nuclear Physics A, Vol. 172, No. 2, 1971, pp. 225-259.
doi:10.1016/0375-9474(71)90713-5

[8] C. Kalbach, “Two-Component Exciton Model: Basic Formalism Away From Shell Closures,” Physical Review C, Vol. 33, No. 3, 1986, pp. 818-833.
doi:10.1103/PhysRevC.33.818

[9] E. Beták and P. E. Hodgson, “Particle-Hole State Density in Pre-equilibrium Nuclear Reactions,” University of Oxford, CERN Libraries, Geneva, 1998.

[10] F. C. Williams Jr., “Particle-Hole State Density in the Uniform Spacing Model,” Nuclear Physics A, Vol. 166 No. 2, 1971, pp. 231-240.
doi:10.1016/0375-9474(71)90426-X

[11] M. Avrigeanu and V. Avrigeanu, “Partial Level Density for Nuclear Data Calculations,” Computer Physics Communications, Vol. 112, No. 2-3, 1998, pp. 191-226.

[12] W. E. Meyrhof, “Elements of Nuclear Physics,” Mc Grew Hill, New York, 1967, pp. 36,58.

[13] A. de-Shalit and I. Talmi, “Nuclear Shell Theory,” Academic Press, Waltham, 1963, p. 27.

[14] A. S. Davydov, “Quantum Mechanics,” Pergamon Press, Oxford, 1969, p. 371.

[15] C. Kalbach, “Missing Final States and the Spectral Endpoint in Exciton Model Calculations,” Physical Review C, Vol. 73, No. 2, 2006, Article ID: 024614.
doi:10.1103/PhysRevC.73.024614

[16] G. M. Braga-Marcazzan, E. Gadioli-Erba, L. M. Millazo-Colli and P. G. Sona, “Analysis of the Total (n,p) Cross Sections around 14 MeV with the Pre-Equilibrium Exciton Model,” Physical Review C, Vol. 6, No. 4, 1972, pp. 1398-1407. doi:10.1103/PhysRevC.6.1398

[17] C. Kalbach, “Isospin Dependence of Two-Component Particle-Hole State Density,” Physical Review C, Vol. 30, No. 4, 1984, pp. 1310-1319.
doi:10.1103/PhysRevC.30.1310

[18] C. Kalbach, “Particle-Hole State density with Good Isospin,” Physical Review C, Vol. 47, No. 2, 1993, pp. 587-601. doi:10.1103/PhysRevC.47.587

[19] C. Kalbach, “Isospin Conversion in Preequilibrium Reactions,” Physical Review C, Vol. 72, No. 2, 2005, Article ID: 024607. doi:10.1103/PhysRevC.72.024607

[20] C. Kalbach and F. M. Mann, “Phenomenology of Continuum Angular Distributions. I. Systematics and Parametrization,” Physical Review C, Vol. 23, No. 1, 1981, pp. 112-123. doi:10.1103/PhysRevC.23.112

[21] C. Kalbach, “Phenomenology of Continuum Angular Distributions. II. Griffin Preequilibrium Model,” Physical Review C, Vol. 23, No. 1, pp. 124-135.
doi:10.1103/PhysRevC.23.124

[22] M. B. Chadwick and P. Oblozinsky, “Particle-Hole State Densities with Linear Momentum and Angular Distributions in Preequilibrium Reaction,” Physical Review C, Vol. 46, No. 5, 1992, pp. 2028-2041.
doi:10.1103/PhysRevC.46.2028

[23] S. S. Shafik, “Angular Momentum Distribution for State Density with Non-ESM Dependence,” Journal of Fisica Nucleare, 2009.

[24] Ye. A. Bogila, V. M. Kolomietz, A. I. Sanzhur and S. Shlomo, “Preequilibrium Decay in the Exciton Model for Nuclear Potential with a Finite Depth,” Physical Review C, Vol. 53, No. 2, 1996, pp. 855-859.
doi:10.1103/PhysRevC.53.855

[25] M. Avrigeanu, A. Harangozo and V. Avrigeanu, “Average Strength of the Effective Interaction in Multistep Direct Reactions,” Physical Review C, Vol. 56, No. 3, 1997, pp. 1633-1636. doi:10.1103/PhysRevC.56.1633

[26] Y. K. Gupta, D. C. Biswas, Bency John, B. K. Nayak, A. Saxena and R. K. Choudhury, “Nuclear Level-Density Parameters of Nuclei in the Z~70 and A~180 Mid-Shell Regions,” Physical Review C, Vol. 80, No. 5, 2009, Article ID: 054611. doi:10.1103/PhysRevC.80.054611

[27] H. Nakada and Y. Alhassid, “Publisher’s Note: Isospin-Projected Nuclear Level Densities by the Shell Model Monte Carlo Method,” Physical Review C, Vol. 78, No. 6, 2008, Article ID: 069907.
doi:10.1103/PhysRevC.78.069907