[1] Anyonge, C. H., & Roshetko, J. M. (2003). Farm-level timber production: Orienting farmers towards the market. Unasylva, 54, 48-56.
[2] Aoudji, A. K. N., Adégbidi, A., Agbo, V., Atindogbé, G., Toyi, M. S. S., Yêvidé, A. S. I., Ganglo, J. C., & Lebailly, P. (2012). Functioning of farm-grown timber value chains: Lessons from the smallholderproduced teak (Tectona grandis L.f.) poles value chain in Southern Benin. Forest Policy and Economics, 15, 98-107. http://dx.doi.org/10.1016/j.forpol.2011.10.004
[3] Atindogbé, G. (2012). Evaluation et caractérisation de la ressource en teck (Tectona grandis L.f.) dans les plantations privées du Sud-Bénin. Thèse de doctorat, Bénin: Université d’Abomey-Calavi.
[4] Bailey, R. L., & Dell, T. R. (1973). Quantifying diameter distributions with Weibull function. Forest Sciences, 19, 97-104.
[5] Borders, B. E., Souter, R. A., Bailey, R. L., & Ware, K. D. (1987). Percentile-based distributions characterize forest stand tables. Forest Sciences, 33, 570-576.
[6] Frazier, J. R. (1981). Compatible whole-stand and diameter distribution models for loblolly pine stands. Ph.D. Thesis, Blacksburg: Virginia Polytechnic Institute.
[7] Hafley, W. L., & Schreuder, H. T. (1977). Statistical distributions for fitting diameter and height data in even-aged stands. Canadian Journal of Forest Research, 7, 481-487. http://dx.doi.org/10.1139/x77-062
[8] Harrison, S. R., Herbohn, J. L., & Niskanen, A. J. (2002). Non-industrial, smallholder, small-scale and family forestry: What’s in a name? Small-Scale Forest Economics. Management and Policy, 1, 1-11.
[9] Kilkki, P., & Paivinen, R. (1986). Weibull function in the estimation of the basal area dbh-distribution. Silva Fennica, 20, 149-156.
[10] Kilkki, P., Maltamo, M., Mykkanen, R., & Paivinen, R. (1989). Use of the Weibull function in estimating the basal area dbhdistribution. Silva Fennica, 23, 311-318.
[11] Knoebel, B. R., Burkhart, H. E., & Beck, D. E. (1986). A growth and yield model for thinned stands of yellow-poplar. Forest Sciences Monograph, 27, 64.
[12] Lafond, V., Cordonnier, T., De Coligny, F., & Courbaud, B. (2012). Reconstructing harvesting diameter distribution from aggregate data. Annals of Forest Science, 69, 235-243. http://dx.doi.org/10.1007/s13595-011-0155-2
[13] Leduc, D. J., Matney, T. G., Belli, K. L., & Baldwin, V. C. (2001). Predicting diameter distributions of longleaf pine plantations: A comparison between artificial neural networks and other accepted methodologies. USDA For Serv Res Pap SRS-25.
[14] Lei, Y. (2008). Evaluation of three methods for estimating the Weibull distribution parameters of Chinese pine (Pinus tabulaeformis). Forest Sciences, 54, 566-571.
[15] Lejeune, P. (1994). Construction d’un modèle de répartition des arbres par classes de grosseur pour des plantations d’épicéa commun (Picea abies L Karst) en Ardenne belge. Annals of Forest Science, 51, 53-65. http://dx.doi.org/10.1051/forest:19940104
[16] Lindsay, S. R., Wood, G. R., & Woollons, R. C. (1996). Stand table modeling through the Weibull distribution and usage of skewness information. Forest Ecology and Management, 81, 19-23. http://dx.doi.org/10.1016/0378-1127(95)03669-5
[17] Little, S. N. (1983). Weibull diameter distributions for mixed stands of western conifers. Canadian Journal of Forest Research, 13, 85-88. http://dx.doi.org/10.1139/x83-012
[18] Liu, C., Zhang, S. Y., Lei, Y., Newton, P. F., & Zhang, L. (2004). Evaluation of three methods predicting diameter distributions of black spruce (Picea mariana) plantations in central. Canadian Journal of Forest Research, 34, 2424-2432. http://dx.doi.org/10.1139/x04-117
[19] Louppe, D. (2008). Tectona grandis (L. f). In D. Louppe, A. A. OtengAmoako, & M. Brink (Eds.), Ressources végétales de l’Afrique Tropicale. Bois d’oeuvre 1. [Traduction de: Plant Resources of Tropical Africa. Timbers 1. 2008]. Wageningen, Pays-Bas: Fondation PROTA; Leiden, Pays-Bas: Backhuys Publishers; Wageningen, PaysBas: CTA.
[20] Maldonado, G., & Louppe, D. (1999). Les plantations villageoises de teck en Cote d’Ivoire. Bois et Forêts des Tropiques, 262, 19-30.
[21] Mateus, A., & Tomé, M. (2011). Modelling the diameter distribution of eucalyptus plantations with Johnson’s SB probability density function: Parameters recovery from a compatible system of equations to predict stand variables. Annals of Forest Science, 68, 325-335. http://dx.doi.org/10.1007/s13595-011-0037-7
[22] Murthy, P. D. N., Xie, M., & Jiang, R. (2004). Weibull models. Wiley series in probability and statistics. Hoboken.
[23] Nanang, D. M. (1998). Suitability of the normal, log-normal and Weibull distributions for fitting diameter distributions of neem plantations in Northern Ghana. Forest Ecology and Management, 103, 1-7. http://dx.doi.org/10.1016/S0378-1127(97)00155-2
[24] Nawir, A. A., Kassa, H., Sandewall, M., Dore, D., Campbell, B., Ohlsson, B., & Bekele, M. (2007). Stimulating smallholder tree planting—Lessons from Africa and Asia. Unasylva, 58, 53-59.
[25] Newton, P. F., & Amponsah, I. G. (2005). Evaluation of Weibull-based parameter prediction equation systems for black spruce and jack pine stand types within the context of developing structural stand density management diagrams. Canadian Journal of Forest Research, 35, 2996-3010. http://dx.doi.org/10.1139/x05-216
[26] Niskanen, A. (1998). Financial and economic profitability of reforestation in Thailand. Forest Ecology and Management, 104, 57-68. http://dx.doi.org/10.1016/S0378-1127(97)00263-6
[27] Odiwe, A. F., Adewumi, R. A., Alami, A. A., & Ogunsanwo, O. (2012). Carbon stock in topsoil, standing floor litter and above ground biomass in Tectona grandis plantation 10-years after establishment in Ile-Ife, Southwestern Nigeria. International Journal of Biological and Chemical Sciences, 6, 3006-3016.
[28] Parresol, B. R., Fonseca, T. F., & Marques, C. P. (2010). Numerical details and SAS programs for parameter recovery of the SB distribution. Forest Service, Southern Research Station, General Technical Report SRS-122, United States Department of Agriculture, 31 p.
[29] Pauwels, D. (2003). Conception d’un systeme d’aide à la decision pour le choix d’un Scenario sylvicole: Application aux peuplements de mélèze en Région wallonne. Thèse de Doctorat, Gembloux: Faculté Universitaire des Sciences Agronomiques.
[30] Razali, A. M., Salih, A. A., & Mahdi, A. A. (2009). Best estimate for the parameters of the three parameter Weibull distribution. Proceedings of the 5th Asian Mathematical Conference, Malaysia, 2009.
[31] Rennolls, K., Geary, D. N., & Rollinson, T. J. D. (1985). Characterizing diameter distributions by the use of the Weibull distribution. Forestry, 58, 57-66.
[32] Reynolds, M. R., Burk, T. E., & Huang, W. C. (1988). Goodness of fit tests and model selection procedures for diameter distribution models. Forest Sciences, 34, 373-399.
[33] Rondeux, J., Laurent, C., & Thibaut, A. (1992). Construction d’une table de production pour le douglas (Pseudotsuga mensiesii Mirb. Franco) en Belgique. Bulletin des Recherches Agronomiques de Gembloux, 27, 327-347.
[34] Scherr, S. J. (2004). Building opportunities for small-farm agroforestry to supply domestic wood markets in developing countries. Agroforestry Systems, 61-62, 357-370. http://dx.doi.org/10.1023/B:AGFO.0000029010.97567.2b
[35] Torres-Rojo, J. M., Magana, O. S., & Acosta, M. (2000). Metodología para mejorar la predicción de parámetros de distribuciones diamétricas. Agrociencia, 34, 627-637.
[36] WorldClim (2005). WorldClim Global Climate Data (GIS Data). http://www.worldclim.org/
[37] Zhang, L., Packard, K. C., & Liu, C. (2003). A comparison of estimation methods for fitting Weibull and Johnson’s SB distributions to mixed spruce-fir stands in northeastern North America. Canadian Journal of Forest Research, 33, 1340-1347. http://dx.doi.org/10.1139/x03-054