OJMetal  Vol.3 No.3 , September 2013
Dynamic Compressive Deformation and Fracture of a Hollow Bulk Metallic Glass
Abstract: The dynamic mechanical behaviors of hollow Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 bulk metal glass (BMG) are investigated using a splitting Hopkinson pressure bar (SHPB) in this study. Upon dynamic compressive loading, the hollow specimen exhibit lower strength and poor ductility, caused by the higher stress concentration for the hollow one through FEM modeling. The different strain-rate responses for the hollow specimen are compared and explained. On the fracture surface of the hollow samples, there are highly dense vein patterns, many liquid drops and fishbone-like patterns.
Cite this paper: Ye, H. , Zhang, T. , Wang, Z. , Zhou, H. , Sang, S. , Yang, H. and Qiao, J. (2013) Dynamic Compressive Deformation and Fracture of a Hollow Bulk Metallic Glass. Open Journal of Metal, 3, 50-55. doi: 10.4236/ojmetal.2013.33008.

[1]   W. Klement, R. H. Willens and P. Duwez, “Non-crystalline Structure in Solidified Gold-Silicon Alloys,” Nature, Vol. 187, No. 4740, 1960, pp. 869-870. doi:10.1038/187869b0

[2]   A. Inoue, B. L. Shen, H. Koshiba, H. Kato and A. R. Yavari, “Cobalt-Based Bulk Glassy Alloy with Ultrahigh Strength and Soft Magnetic Properties,” Nature Materials, Vol. 2, No. 10, 2003, pp. 661-664. doi:10.1038/nmat982

[3]   A. Peker and W. L. Johnson, “A Highly Processable Metallic Glass,” Applied Physics Letters, Vol. 63, No. 17, 1993, pp. 2342-2344. doi:10.1063/1.110520

[4]   A. Inoue, T. Zhang, N. Nishiyama, K. Ohba and T. Masumoto, “Preparation of 16 mm Diameter Rod of Amorphous Zr65Al7.5Ni10Cu17.5 Alloy,” Materials Transactions, Vol. 34, No. 12, 1993, pp. 1234-1237.

[5]   W. H. Wang, C. Dong and C. H. Shek, “Bulk Metallic Glasses,” Materials Science and Engineering: R, Vol. 44, No. 2-3, 2004, pp. 45-89. doi:10.1016/j.mser.2004.03.001

[6]   H. G. Kim and H. J. Jang, “ Effect of Temperature and PH Level on the Corrosion Behavior of Amorphous Co69Fe4.5Nb1.5Si10B15 Alloy,” Metals and Materials International, Vol. 16, No. 4, 2010, pp. 581-585. doi:10.1007/s12540-010-0810-4

[7]   H. Kimura and T. Masumoto, “Strength, Ductility and Toughness—A Model Study in Mechanics,” In: F. E. Luborsky, Ed., Amorphous Metallic Alloys, Butterworths, London, 1983, p. 187.

[8]   F. Spaepen and A. I. Taub, “Flow and Fracture,” In: F. E. Luborsky, Ed., Amorphous Metallic Alloys, Butterworths, London, 1983, p. 231.

[9]   Z. F. Zhang, H. Zhang, X. F. Pan, J. Das and J. Eckert, “Effect of Aspect Ratio on the Compressive Deformation and Fracture Behaviour of Zr-Based Bulk Metallic Glass,” Philosophical Magazine Letters, Vol. 85, No. 10, 2005, pp. 513-521. doi:10.1080/09500830500395237

[10]   J. Lu and G. Ravichandran, “Pressure-Dependent Flow Behavior of Zr41.2Ti13.8Cu12.5Ni10Be22.5 Bulk Metallic Glass,” Journal of Materials Research, Vol. 18, No. 9, 2003, pp. 2039-2042.

[11]   W. H. Jiang, K. Qiu, F. Liu, H. Choo and P. K. Liaw, “Compressive Deformation and Fracture of a Hollow Bulk-Metallic Glass,” Advanced Engineering Materials, Vol. 9, No. 3, 2007, pp.147-150. doi:10.1002/adem.200600249

[12]   D.-G. Lee, S. Lee and C. S. Lee, “Quasi-Static and Dynamic Deformation Behavior of Ti-6Al-4V Alloy Containing Fine α2-Ti3Al Precipitates,” Materials Science and Engineering: A, Vol. 366, No. 1-2, 2004, pp. 25-37. doi:10.1016/j.msea.2003.08.061

[13]   A. Marchand, J. Duffy and J. Mech, “An Experimental Study of the Formation Process of Adiabatic Shear Bands in a Structural Steel,” Journal of the Mechanics and Physics of Solids, Vol. 36, No. 3, 1988, pp. 251-283. doi:10.1016/0022-5096(88)90012-9

[14]   K. A. Hartley, J. Duffy and R. H. Hawley, “Measurement of the Temperature Profile during Shear Band Formation in Steels Deforming at High Strain Rates,” Journal of the Mechanics and Physics of Solids, Vol. 35, No. 3, 1987, pp. 283-301. doi:10.1016/0022-5096(87)90009-3

[15]   D.-K. Kim, S. Y. Kang, S. Lee and K. J. Lee, “Analysis and Prevention of Cracking Phenomenon Occurring during Cold Forging of Two AISI 1010 Steel Pulleys,” Metallurgical and Materials Transactions A, Vol. 30, No. 1, 1999, pp. 81-92. doi:10.1007/s11661-999-0197-3

[16]   K. Cho, S. Lee, S. R. Nutt and J. Duffy, “Adiabatic Shear Band Formation during Dynamic Torsional Deformation of an HY-100 Steel,” Acta Metallurgica, Vol. 41, No. 3, 1993, pp. 923-932. doi:10.1016/0956-7151(93)90026-O

[17]   J. W. Qiao, P. Feng, Y. Zhang, Q. M. Zhang and G. L. Chen, “Quasi-Static and Dynamic Deformation Behaviors of Zr-Based Bulk Metallic Glass Composites Fabricated by the Bridgman Solidification,” Journal of Alloys and Compounds, Vol. 486, No. 1-2, 2009, pp. 527-531. doi:10.1016/j.jallcom.2009.06.196

[18]   D. G. Lee, Y. G. Kim, B. Hwang, S. Lee and Y. T. Lee, “Effects of Temperature on Dynamic Compressive Properties of Zr-Based Amorphous Alloy and Composite,” Materials Science and Engineering: A, Vol. 472, No. 1-2, 2008, pp. 316-323. doi:10.1016/j.msea.2007.04.050

[19]   Y. F. Xue, H. N. Cai, L.Wang, F. C. Wang, H. F. Zhang and Z. Q. Hu, “Deformation and Failure Behavior of a Hydrostatically Extruded Zr38Ti17Cu10.5Co12Be22.5 Bulk Metallic Glass/Porous Tungsten Phase Composite under Dynamic Compression,” Composites Science and Technology, Vol. 68, No. 15-16, 2008, pp. 3396-3400. doi:10.1016/j.compscitech.2008.09.026

[20]   Y. G. Kim, S. Y. Shin, J. S. Kim, H. Huh, K. J. Kim and S. Lee, “Dynamic Deformation Behavior of Zr-Based Amorphous Alloy Matrix Composites Reinforced with STS304 or Tantalum Fibers,” The Minerals, Metals & Materials Society and ASM International, Vol. 43, No. 9, 2012, pp 3023-3033.

[21]   Y. F. Xue, L. Wang, X. W. Cheng, F. C. Wang , H. W. Cheng, H. F. Zhang and A. M. Wang, “Strain Rate Dependent Plastic Mutation in a Bulk Metallic Glass under Compression,” Materials & Design, Vol. 36, No. 4, 2012, pp. 284-288. doi:10.1016/j.matdes.2011.11.025

[22]   F. Spaepen, “A Microscopic Mechanism for Steady State Inhomogeneous Flow in Metallic Glasses,” Acta Metallurgica, Vol. 25, No. 4, 1977, pp. 407-415. doi:10.1016/0001-6160(77)90232-2

[23]   A. S. Argon, “Plastic Deformation in Metallic Glasses,” Acta Metallurgica, Vol. 27, No. 1, 1979, pp. 47-58. doi:10.1016/0001-6160(79)90055-5

[24]   W. H. Jiang and M. Atzmon, “Rate Dependence of Serrated Flow in a Metallic Glass,” Journal of Materials Research, Vol. 18, No. 4, 2003, pp. 755-757. doi:10.1557/JMR.2003.0103

[25]   C. A. Schuh, A. S. Argon, T. G. Nieh and J. Wadsworth, “The Transition from Localized to Homogeneous Plasticity during Nanoindentation of an Amorphous Metal,” Philosophical Magazine, Vol. 83, No. 22, 2003, pp. 2585-2597. doi:10.1080/1478643031000118012

[26]   C. A. Schuh, A. C. Lund and T. G. Nieh, “New Regime of Homogeneous Flow in the Deformation Map of Metallic Glasses: Elevated Temperature Nanoindentation Experiments and Mechanistic Modeling,” Acta Materialia, Vol. 52, No. 20, 2004, pp. 5879-5891. doi:10.1016/j.actamat.2004.09.005

[27]   G. P. Zhang, W. Wang, B. Zhang, J. Tan, C. S. Liu, “On rate-Dependent Serrated Flow Behavior in Amorphous Metals during Nanoindentation,” Scripta Materialia, Vol. 52, No. 11, 2005, pp. 1147-1151. doi:10.1016/j.scriptamat.2005.01.045

[28]   J. W. Qiao, P. Feng, Y. Zhang, Q. M. Zhang, P. K. Liaw, G. L. Chen, “Quasi-Static and Dynamic Deformation Behaviors of in Situ Zr-Based Bulk-Metallic-Glass-Matrix Composites,” Journal of Materials Research, Vol. 25, No. 12, 2010, pp. 2264-2270. doi:10.1557/jmr.2010.0289

[29]   G. Wang, D. Q. Zhao, H. Y. Bai, M. X. Pan, A. L. Xia, B. S. Han, X. K. Xi, Y. Wu and W. H. Wang, “Nanoscale Periodic Morphologies on the Fracture Surface of Brittle Metallic Glasses,” Physical Review Letters, Vol. 98, No. 23, 2007, Article ID: 235501. doi:10.1103/PhysRevLett.98.235501

[30]   C. T. Liu, L. Healtherly, D. S. Easton, C. A. Carmichael, J. H. Schneibel, C. H. Chen, J. L. Wright, M. H. Yoo, J. A. Horton and A. Inoue, “Test Environments and Mechanical Properties of Zr-Base Bulk Amorphous Alloys,” Metallurgical and Materials Transactions A, Vol. 29, No. 7, 1998, pp. 1811-1820. doi:10.1007/s11661-998-0004-6

[31]   H. A. Bruck, A. J. Rosakis and W. L. Johnson, “The Dynamic Compressive Behavior of Beryllium Bearing Bulk Metallic Glasses,” Journal of Materials Research, Vol. 11, No. 2, 1995, p. 503. doi:10.1557/JMR.1996.0060

[32]   G. Subhash, R. J. Dowding and L. J. Kecskes, “Characterization of Uniaxial Compressive Response of Bulk Amorphous Zr-Ti-Cu-Ni-Be Alloy,” Materials Science and Engineering: A, Vol. 334, No. 1-2, 2002, pp. 33-40. doi:10.1016/S0921-5093(01)01768-3

[33]   G. Sunny, F. Yuan, V. Prakash and J. Lewandowski, “Effect of High Strain Rates on Peak Stress in a Zr-Based Bulk Metallic Glass,” Journal of Applied Physics, Vol. 104, No. 9, 2008, Article ID: 093522. doi:10.1063/1.3009962

[34]   J. J. Lewandowski and A. L. Greer, “Temperature Rise at Shear Bands in Metallic Glasses,” Nature Materials, Vol. 5, No. 1, 2005, pp. 15-18.

[35]   B. Yang, M. L. Morrison, P. K. Liaw, R. A. Buchanan, G. Y. Wang, C. T. Liu and M. Denta, “The Electrochemical Evaluation of a Zr-Based Bulk Metallic Glass in a Phosphate-Buffered Saline Electrolyte,” Applied Physics Letters, Vol. 86, No. 3, 2005, Article ID: 141904.

[36]   B. A. Sun, J. Tan, S. Pauly, U. Kuhn and J. Eckert, “Stable Fracture of a Malleable Zr-Based Bulk Metallic Glass,” Journal of Applied Physics, Vol. 112, No. 10, 2012, Article ID: 103533. doi:10.1063/1.4767327