On Cost Based Algorithm Selection for Problem Solving

Show more

References

[1] T. H. Cormen, C. Stein, R. L. Rivest and C. E. Leiserson, “Introduction to Algorithms,” 3rd Edition, MIT Press, Cambridge, 2009.

[2] J. Hartmanis and R. E. Stearns, “On the Computational Complexity of Algorithms,” Transactions of the American Mathematical Society, Vol. 117, No. 5, 1965, pp. 285-306. doi:10.1090/S0002-9947-1965-0170805-7

[3] J. Belanger, A. Pavan and J. Wang, “Reductions Do Not Preserve Fast Convergence Rates in Average Time,” Algorithmica, Vol. 23, No. 4, 1999, pp. 363-378.

[4] M. R. Garey and D. S. Johnson, “Computers and Intractability: A Guide to the Theory of NP-Completeness,” Freeman and Company, New York, 1979.

[5] D. B. Lloyd Trefethen, “Numerical Linear Algebra,” SIAM, Philadelphia, 1997.
doi:10.1137/1.9780898719574

[6] J. W. Demmel, “Applied Numerical Linear Algebra,” SIAM, Philadelphia, 1997.
doi:10.1137/1.9781611971446

[7] N. J. Higham, “Accuracy and Stability of Numerical Algorithms,” SIAM, Philadelphia, 2002.
doi:10.1137/1.9780898718027

[8] W. Hackbusch, “Multi-Grid Methods and Applications,” 2nd Edition, Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 2003.

[9] Y. Shapira, “Matrix-Based Multigrid: Theory and Applications,” 2nd Edition, Springer Publishing Company, New York, 2008. doi:10.1007/978-0-387-49765-5

[10] M. Mitchell, “Introduction to Genetic Algoritms,” MIT Press, Cambridge, 2008.

[11] C. Chow and J. N. Tsitsiklis, “An Optimal One-Way Multigrid Algorithm for Discrete-Time Stochastic Control,” IEEE Transactions on Automatic Control, Vol. 36, No. 8, 1991, pp. 898-914. doi:10.1109/9.133184

[12] J. Nocedal and S. Wright, “Numerical Optimization,” Springer, New York, 1999. doi:10.1007/b98874

[13] M. Hofri, “Analysis of Algorithms: Computational Methods and Mathematical Tools,” Oxford University Press, New York, 1995.