OJI  Vol.3 No.3 , September 2013
Total IgA and IgA reactivity to antigen I/II epitopes in HLA-DRB1*04 positive subjects
Abstract: Bacterial adherence to the acquired dental pellicle, important in dental caries (caries), is mediated by receptor-adhesins such as salivary agglutinin binding to Streptococcus mutans antigen I/II (I/II). Ten selected I/II epitopes were chosen to determine their reactivity to human salivary IgA. Previous studies suggested that a specific HLA biomarker group (HLA-DRB1*04) may have differential influence of immune responses to I/II. However, it was not known whether secretory IgA (SIgA) responses to the selected epitopes from HLA-DRB1*04 positive subjects were different compared to controls, or across other caries-related factors such as total IgA (TIgA). Thirty-two total subjects were matched according to HLA type, gender, ethnicity and age. HLA genotyping, oral bacterial, immunoglobulin and antibody analyses were performed. A large observed difference emerged with regard to the natural immune reservoir of TIgA in HLA-DRB1*04 positive subjects, specifically, a 27.6% reduction compared to controls. In contrast to all other epitopes studied, HLA-DRB1*04 positive subjects also exhibited reduced reactivity to I/II epitope 834-853. HLA-DRB1*04 positive subjects exhibited lower specific SIgA activity/TIgA to 834-853 and also a lower specific reactivity to 834-853/whole cell S. mutans UA159. Furthermore, HLA-DRB1*04 positive subjects exhibited lower responses to I/II in its entirety. The large observed difference in TIgA and the 834-853 reactivity pattern across multiple measures suggest potentially important connections pertaining to the link between HLA-DRB1*04 and caries.
Cite this paper: McCarlie, V. , Hartsfield Jr, J. , Blum, J. , González-Cabezas, C. , Chin, J. , Eckert, G. , Morford, L. , Pescovitz, M. , Rodriguez, H. , Fontana, M. and Gregory, R. (2013) Total IgA and IgA reactivity to antigen I/II epitopes in HLA-DRB1*04 positive subjects. Open Journal of Immunology, 3, 82-92. doi: 10.4236/oji.2013.33012.

[1]   Taubman, M.A. and Nash, D.A. (2006) The scientific and public-health imperative for a vaccine against dental caries. Nature Reviews Immunology, 6, 555-563. doi:10.1038/nri1857

[2]   Caufield, P.W., Cutter, G.R. and Dasanayake, A.P. (1993) Initial acquisition of mutans streptococci by infants: Evidence for a discrete window of infectivity. Journal of Dental Research, 72, 37-45. doi:10.1177/00220345930720010501

[3]   Bagherian, A., Neamatollahi, H., Afshari, J.T. and Moheghi, N. (2008) Comparison of allele frequency for HLA- DR and HLA-DQ between patients with ECC and caries- free children. Journal of Indian Society of Pedodontics and Preventive Dentistry, 26, 18-21. doi:10.4103/0970-4388.40316

[4]   Robinette, R.A., Oli, M.W., McArthur, W.P. and Brady L.J. (2011) A therapeutic anti-Streptococcus mutans monoclonal antibody used in human passive protection trials influences the adaptive immune response. Vaccine, 29, 6292-6300. doi:10.1016/j.vaccine.2011.06.027

[5]   Boyton, R.J., Smith, J., Jones, M., Reynolds, C., Ozerovitch, L., Chaudhry, A., et al. (2008) Human leucocyte antigen class II association in idiopathic bronchiectasis, a disease of chronic lung infection, implicates a role for adaptive immunity. Clinical & Experimental Immunology, 152, 95-101. doi:10.1111/j.1365-2249.2008.03596.x

[6]   Kotb, M., Norrby-Teglund, A., McGeer, A., El-Sherbini, H., Dorak, M.T., Khurshid, A., et al. (2002) An immunogenetic and molecular basis for differences in outcomes of invasive group A streptococcal infections. Nature Medicine, 8, 1398-1404. doi:10.1038/nm1202-800

[7]   Vanderborght, P.R., Pacheco, A., Moraes, M.E., Antoni, G., Romero, M., Verville, A., et al. (2007) HLA-DRB1* 04 and DRB1*10 are associated with resistance and susceptibility, respectively, in Brazilian and Vietnamese leprosy patients. Genes and Immunity, 8, 320-324. doi:10.1038/sj.gene.6364390

[8]   Niiyama, T., Kojima, H., Mizuno, K., Matsuno, Y., Fujii, H., Misonou, J., et al. (1987) Genetic control of the immune responsiveness to Streptococcus mutans by the major histocompatibility complex of the rat (RT1). Infection and Immunity, 55, 3137-3141.

[9]   Takahashi, I., Matsushita, K., Nisizawa, T., Okahashi, N., Russell, M.W., Suzuki, Y., et al. (1992) Genetic control of immune responses in mice to synthetic peptides of a Streptococcus mutans surface protein antigen. Infection and Immunity, 60, 623-629.

[10]   Suzuki, N., Kurihara, Y. and Kurihara, Y. (1998) Dental caries susceptibility in mice is closely linked to the H-2 region on chromosome 17. Caries Research, 32, 262-265. doi:10.1159/000016462

[11]   Lehner, T., Lamb, J.R., Welsh, K.L. and Batchelor, R.J. (1981) Association between HLA-DR antigens and helper cell activity in the control of dental caries. Nature, 292, 770-772. doi:10.1038/292770a0

[12]   Wallengren, M.L.L., Hamberg, K., Ericson, D. and Nordberg, J. (2005) Low salivary IgA activity to cell-surface antigens of mutans streptococci related to HLA-DRB1*04. Oral Microbiology and Immunology, 20, 73-81. doi:10.1111/j.1399-302X.2004.00192.x

[13]   Ozawa, Y., Chiba, J. and Sakamoto, S. (2001) HLA class II alleles and salivary numbers of mutans streptococci and lactobacilli among young adults in Japan. Oral Microbiology and Immunology, 16, 353-357. doi:10.1034/j.1399-302X.2001.160606.x

[14]   Valarini, N., Maciel, S.M., Moura, S.K. and Poli-Frederico, R.C. (2012) Association of dental caries with HLA class II allele in Brazilian adolescents. Caries Research, 46, 530-535. doi:10.1159/000341188

[15]   Bondinas, G.P., Moustakas, A.K. and Papadopoulos, G.K. (2007) The spectrum of HLA-DQ and HLA-DR alleles, 2006: A listing correlating sequence and structure with function. Immunogenetics, 59, 539-553. doi:10.1007/s00251-007-0224-8

[16]   Jiyun, Y., Guisen L., Li Z., Yi S., Jicheng L., et al. (2012) The genetic variants at the HLA-DRB1 gene are associated with primary IgA nephropathy in Han Chinese. BMC Medical Genetics, 59, 539-553.

[17]   Smith, D.J. (2010) Dental caries vaccines: Prospects and concerns. Expert Review of Vaccines, 9, 1-3. doi:10.1586/erv.09.143

[18]   Russell, R.R.B. (2008) How has genomics altered our view of caries microbiology? Caries Research, 42, 319- 327. doi:10.1159/000151326

[19]   Ajdi?, D., McShan, W.M., McLaughlin, R.E., Savi?, G., Chang, J., Carson, M.B., et al. (2002) Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proceedings of the National Academy of Sciences of the United States of America, 99, 14434-14439. doi:10.1073/pnas.172501299

[20]   Danzer, M., Polin, H., Proll, J., Hofer, K., Fae, I., et al. (2007) High-throughput sequence-based typing strategy for HLA-DRB1 based on real-time polymerase chain reaction. Human Immunology, 68, 915-917. doi:10.1016/j.humimm.2007.10.005

[21]   Kelly, C.G., Todryk, S., Kendal, H.L., Munro, G.H. and Lehner, T. (1995) T-cell, adhesion, and B-cell epitopes of the cell surface Streptococcus mutans protein antigen I/II. Infection and Immunity, 63, 3649-3658.

[22]   Senpuku, H., Tada, A., Nakao, R., Yonezawa, H., Yoneda, S., et al. (2007) Relationships of anti-PAc (361-386) peptide salivary IgA antibody, eosinophils and basophils with periodontal status in the elderly. Fems Immunology and Medical Microbiology, 49, 84-90. doi:10.1111/j.1574-695X.2006.00193.x

[23]   Gregory, R.L., Kindle, J.C., Hobbs, L.C., Filler, S.J. and Malmstrom, H.S. (1990) Function of anti-Streptococcus mutans antibodies: Inhibition of virulence factors and enzyme neutralization. Oral Microbiology and Immunology, 5, 181-188. doi:10.1111/j.1399-302X.1990.tb00643.x

[24]   Gregory, R.L. (2001) Modified immunogenicity of a mucosally administered antigen. Clinical and Diagnostic Laboratory Immunology, 8, 540-544.

[25]   Booth, C.K., Dwyer, D.B., Pacque, P.F. and Ball, M.J. (2009) Measurement of immunoglobulin A in saliva by particle-enhanced nephelometric immunoassay: Sample collection, limits of quantitation, precision, stability and reference range. Annals of Clinical Biochemistry, 46, 401- 406. doi:10.1258/acb.2009.008248

[26]   Larson, M.R., Rajashankar, K.R., Patel, M.H., Robinette, R.A., Crowley, P.J., Michalek, S., et al. (2010) Elongated fibrillar structure of a streptococcal adhesin assembled by the high-affinity association of α- and PPII-helices. Proceedings of the National Academy of Sciences, 107, 5983- 5988. doi:10.1073/pnas.0912293107

[27]   Jakubovics, N.S., Kerrigan, S.W., Nobbs, A.H., Stromberg, N, van Dolleweerd, C.J., Cox D.M., et al. (2005) Functions of cell surface-anchored antigen I/II family and Hsa polypeptides in interactions of Streptococcus gordonii with host receptors. Infection and Immunity, 73, 6629-6638. doi:10.1128/IAI.73.10.6629-6638.2005

[28]   Nogueira, R.D., Alves, A.C., Napimoga, M.H., Smith D.J. and Mattos-Graner, R.O. (2005) Characterization of Salivary immunoglobulin A responses in children heavily exposed to the oral bacterium Streptococcus mutans: Influence of specific antigen recognition in infection. Infection and Immunity, 73, 5675-5684. doi:10.1128/IAI.73.9.5675-5684.2005

[29]   Smith, D.J., King, W.F., Barnes, L.A., Peacock, Z. and Taubman, M.A. (2003) Immunogenicity and protective immunity induced by synthetic peptides associated with putative immunodominant regions of Streptococcus mutans glucan-binding protein B. Infection and Immunity, 71, 1179-1184. doi:10.1128/IAI.71.3.1179-1184.2003

[30]   Troffer-Charlier, N., Ogier, J., Moras, D. and Cavarelli, J. (2002) Crystal structure of the V-region of Streptococcus mutans antigen I/II at 2.4 angstrom resolution suggests a sugar preformed binding site. Journal of Molecular Biology, 318, 179-188. doi:10.1016/S0022-2836(02)00025-6

[31]   Jakubovics, N.S., Brittan, J.L., Dutton, L.C. and Jenkinson, H.F. (2009) Multiple adhesin proteins on the cell surface of Streptococcus gordonii are involved in adhesion to human fibronectin. Microbiology, 155, 3572-3580. doi:10.1099/mic.0.032078-0

[32]   McArthur, W.P., Rhodin, N.R., Seifert, T.B., Oli, M.W., Robinette, R.A., Demuth, D.R., et al. (2007) Characterization of epitopes recognized by anti-Streptococcus mutans P1 monoclonal antibodies. Fems Immunology and Medical Microbiology, 50, 342-353. doi:10.1099/mic.0.032078-0

[33]   Loimaranta, V., Hytonen, J., Pulliainen, A.T., Sharma, A., Tenovuo, J., Stromberg, N., et al. (2009) Leucine-rich repeats of bacterial surface proteins serve as common pattern recognition motifs of human scavenger receptor gp340. Journal of Biological Chemistry, 284, 18614- 18623. doi:10.1074/jbc.M900581200

[34]   Nobbs, A.H., Lamont, R.J. and Jenkinson, H.F. (2009) Streptococcus adherence and colonization. Microbiology and Molecular Biology Reviews, 73, 407-450. doi:10.1128/MMBR.00014-09