IJNM  Vol.2 No.4 , October 2013
Argentinean Copper Concentrates: Structural Aspects and Thermal Behaviour

In Argentina, there are many sources of copper concentrates. Some of them are currently in operation, while others are in the exploration stage. All copper concentrates produced are exported to other countries for copper refinement and to create various finished products. It is desirable that in the near future, these copper concentrates be processed in an Argentinean industrial plant. The aim of this paper was to present the results of a characterisation study carried out on five different copper concentrate samples. The thermal decomposition of the copper concentrates was determined by differential thermal analysis and thermogravimetry (DTA TG). The information was correlated with the chemical composition and the mineralogical phases of the samples identified by X-ray diffraction. A melting test at temperatures of up to 1300℃ was performed to complete the study of the concentrate’s behaviour during heating. After the test, all of the samples were observed by light and electronic scanning microscopy to identify the different phases generated under high-temperature conditions.

Cite this paper
Bazan, V. , Brandaleze, E. , Santini, L. and Sarquis, P. (2013) Argentinean Copper Concentrates: Structural Aspects and Thermal Behaviour. International Journal of Nonferrous Metallurgy, 2, 128-135. doi: 10.4236/ijnm.2013.24019.
[1]   “Peralta e. Actas de Encuentro Internacional de Minería,” Secretaria de Minería de la Nación. Buenos Aires, Argentina, 1994, pp. 5-15.

[2]   Segemar, Servicio Geológico Minero de Argentina. http://www.segemar.gov.ar/P_Oferta_Regiones/Oferta/Introducción.htm

[3]   A. Beretta and V. Bazan, “Algunos Fundamentos de las Ventajas Estratégicas de la Instalación de una Fundición de Cobre en Argentina,” SAM/CONAMET, San Nicolás, Buenos Aires, 2007, pp. 7-12.

[4]   A. Guitierrez, D. Chong and R Espinoza, “Niveles de Exposición de Yacimientos del Distrito Minero de agua de Dionisio (YMAD),” Revista de la Asociación Geológica Argentina, Catamarca, Vol. 61, No. 2, 2006, pp. 269-277.

[5]   V Bazan, P Sarquis and E. Brandaleze, “Caracterización de un Mineral de Cobre en Argentina para la Producción de Matte,” Revista Dyna, No. 167, 2011, pp. 220-228.

[6]   V. Bazán, P. Sarquis and E. Brandaleze, “Factibilidad de una Industria Pirometalurgia con Mineral Argentino 1ras,” Jornadas de Investigación de la Minería del norte Argentino Editorial Científica Universitaria, Universidad Nacional de Catamarca, 2009.

[7]   J. Dunn and C. Muzenda, “Thermal oxidation of covellite (CuS),” Thermochimica Acta, Vol. 369, No. 1-2, 2001, pp. 117-123. http://dx.doi.org/10.1016/S0040-6031(00)00748-6

[8]   L. Winkel, I. Alxneit and M. Sturzenegger, “Thermal Decomposition of Copper Concentrates under Concentrated Radiation-Mechanistic Aspects of the Separation of Copper from Iron Sulfide Phases,” International Journal of Mineral Processing, Vol. 88, No. 1-2, 2008, pp. 24-30. http://dx.doi.org/10.1016/S0040-6031(00)00748-6

[9]   H. Tsukada, Z. Asaki, T. Tanabe and Y. Kondo, “Oxidation of Mixed Copper-Iron Sulfide,” Metallurgical Transactions B-Process Metallurgy, Vol. 12, No. 3, 1981, pp. 603-609. http://dx.doi.org/10.1007/BF02654333

[10]   M. Perez-Tello, H. Y. Sohn and J. Lottiger, “Determination of the Oxidation Characteristics of Solid Copper Matte Particles by Differential Scanning Calorimetry and Thermogravimetric Analysis,” Minerals & Metallurgical Processing, Vol. 16, No. 2, 1999, pp. 1-7.

[11]   J. Dunn and S. Jayaweera, “Applications of Thermoanalytical Methods to Studies of Flash Smelting Reactions,” Thermochimica Acta, Vol. 85, 1985, pp. 115-118. http://dx.doi.org/10.1016/0040-6031(85)85543-X

[12]   Z. Zivkovic, N. Strbac, D. Zivkovic, V. Velinovski and I. Mihajlovic, “Kinetic Study and Mechanism of Chalcocite and Covellite Oxidation Process,” Journal of Thermal Analysis and Calorimetry, Vol. 79, No. 3, 2005, pp. 715-720. http://dx.doi.org/10.1007/s10973-005-0601-1

[13]   ASTM C25-99, “Stándar Test Methods for Chemical Analysis of Limestone, Quicklime and Hydrated Lime,” 1999.

[14]   F. Jorgensen and P. Koh, “Combustion in Flash Smelting Furnaces,” JOM, Vol. 53, No. 5, 2001, pp. 16-21. http://dx.doi.org/10.1007/s11837-001-0201-x

[15]   S. Perez-Fontes, “Determinación de las Características de Oxidación de Minerales Sulfurosos a Altas Temperaturas,” Tesis de Licenciatura en Ingeniería Química, Universidad de Sonora, Hermosillo Sonora, 2004.

[16]   V. Arias, R. Coronado, L. Puente and D. Lovera, “Refractariedad de Concentrados Auriferous,” Revista del Instituto de Investigación de la Facultad de Ingeniería Geológica, Minera, Metalúrgica y Geográfica, Vol. 8, No. 16, 2005, pp. 5-14.

[17]   S. Perez-Fontes, M. Perez-Tello, L. Prieto, F. Brown and F. Castillon-Barraza, “Thermoanalytical Study on the Oxidation of Sulfide Minerals at High Temperatures,” Minerals & Metallurgical Processing, Vol. 24, No. 4, 2007, pp. 275-283.