[1] Pavlopoulos, E., et al. (2001) Neuralized encodes a peripheral membrane protein involved in delta signaling and endocytosis. Developmental Cell, 1, 807-816. doi:10.1016/S1534-5807(01)00093-4
[2] Liu, S., et al. (2012) Functional analysis of the NHR2 domain indicates that oli-gomerization of Neuralized regulates ubiquitination and endocytosis of Delta during Notch signaling. Molecular Cell Biology, 32, 4933-4945. doi:10.1128/MCB.00711-12
[3] Le Borgne, R., et al. (2005) Two distinct E3 ubiquitin ligases have complementary functions in the regulation of delta and serrate signaling in Drosophila. PLoS Biology, 3, e96. doi:10.1371/journal.pbio.0030096
[4] Lai, E.C., et al. (2001) Drosophila neuralized is a ubiquitin ligase that promotes the internalization and degradation of delta. Developmental Cell, 1, 783-794. doi:10.1016/S1534-5807(01)00092-2
[5] Yeh, E., et al. (2001) Neuralized functions as an E3 ubiquitin ligase during Drosophila development. Current Biology, 11, 1675-1679. doi:10.1016/S0960-9822(01)00527-9
[6] Lai, E.C., et al. (2000) Antagonism of notch signaling activity by members of a novel protein family encoded by the bearded and enhancer of split gene complexes. Development, 127,291-306.
[7] Bardin, A.J., and Schweisguth, F. (2006) Bearded family members inhibit Neuralized-mediated endocytosis and signaling activity of Delta in Drosophila. Developmental Cell, 10, 245-255. doi:10.1016/j.devcel.2005.12.017
[8] He, F., et al. (2009) Structural and Functional Characterization of the NHR1 Domain of the Drosophila Neuralized E3 Ligase in the Notch Signaling Pathway. Journal of Molecular Biology, 393, 478-495. doi:10.1016/j.jmb.2009.08.020
[9] Skwarek, L.C., et al. (2007) Neuralized contains a phosphoinositide-binding motif required downstream of ubiquitination for delta endocytosis and notch signaling. Developmental Cell, 13, 783-795. doi:10.1016/j.devcel.2007.10.020
[10] Weinmaster, G. and Fischer, J.A. (2011) Notch ligand ubiquitylation: What is it good for? Developmental Cell, 21, 134-144. doi:10.1016/j.devcel.2011.06.006
[11] Otwinowski, Z. and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods in Enzymology, 276, 307-326. doi:10.1016/S0076-6879(97)76066-X
[12] CCP4. (1994) Collaborative Computational Project. Acta Crystallographica Section D: Biological Crystallography, D50, 760.
[13] Navaza, J. (1994) AMoRe: an automated package for molecular replacement. Acta Crystallographica Section A: Foundations of Crystallography, A50, 157-163. doi:10.1107/S0108767393007597
[14] Murshudova, G.N., Vagin, A.A. and Dodson, E.J. (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallographica Section D: Biological Crystallography, D53, 240-255. doi:10.1107/S0907444996012255
[15] Emsley, P. and Cowtan, K. (2004) Coot: model-building tools for molecular graphics. Acta Crystallographica Section D: Biological Crystallography, D60, 2126-2132. doi:10.1107/S0907444904019158
[16] Laskowski, R.A., et al. (1993) PROCHECK—A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26, 283-291. doi:10.1107/S0021889892009944
[17] Baker, N.A., et al. (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proceedings of the National Academy of Science USA, 98, 10037-10041. (APBS)
[18] Sali, A. and Blundell, T.L. (1993) Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology, 234,779-815. doi:10.1006/jmbi.1993.1626
[19] Lo, M.C., et al. (2004) Evaluation of fluorescence-based thermal shift assays for hit identification in drug discovery. Analytical Biochemistry, 332, 153-159. doi:10.1016/j.ab.2004.04.031
[20] Azzam, R.M.A. and N.M. Bashara. (1977) Ellipsometry and polarized light. In: Cowley, J.M. Ed., North Holland Personal Library, North Holland Personal Library, Amsterdam, 340.
[21] De Feijter, J.A., Benjamins, J. and Veer, F.A. (1978) Ellipsometry as a tool to study the adsorption behaviour of synthetic and biopolymers at the air-water interface. Biopolymers, 17, 1759-1772. doi:10.1002/bip.1978.360170711
[22] Venien-Bryan, C., et al. (1998) Characterization of the growth of 2D protein crystals on a lipid monolayer by ellipsometry and rigidity measurements coupled to electron microscopy. Biophysical Journal, 74, 2649-2657. doi:10.1016/S0006-3495(98)77970-6
[23] Renault, A., et al. (1999) Surface-induced polymerization of actin. Biophysical Journal, 76, 1580-1590. doi:10.1016/S0006-3495(99)77317-0
[24] Bolanos-Garcia, V.M., et al. (2005) The conserved N-terminal region of the mitotic checkpoint protein BUBR1: A putative TPR motif of high surface activity. Biophysical Journal, 89, 2640-2649. doi:10.1529/biophysj.105.063511
[25] Shi, J., Blundell, T.L. and Mizuguchi, K. (2001) FUGUE: Sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. Journal of Molecular Biology, 310, 243-257. doi:10.1006/jmbi.2001.4762
[26] Linossi, E.M. and Nicholson, S.E. (2012) The SOCS box-adapting proteins for ubiquitination and proteasomal degradation. IUBMB Life, 64, 316-323. doi:10.1002/iub.1011
[27] Mizuguchi, K., et al. (1998) JOY: Protein sequence-structure representation and analysis. Bioin-formatics, 14, 617- 623. doi:10.1093/bioinformatics/14.7.617
[28] Woo, J.S., et al. (2006) Structural basis for protein recognition by B30.2/SPRY domains. Molecular Cell, 24, 967-976. doi:10.1016/j.molcel.2006.11.009
[29] Ponting, C.P., et al. (2001) Novel protein domains and repeats in Drosophila melanogaster: Insights into structure, function, and evolution. Genome Research, 11, 1996-2008. doi:10.1101/gr.198701
[30] Commisso, C. and Boulianne, G.L. (2007) The NHR1 domain of Neuralized binds Delta and mediates Delta trafficking and Notch signaling. Molecular Biology of the Cell, 18, 1-13. doi:10.1091/mbc.E06-08-0753
[31] Commisso, C. and Boulianne, G.L. (2008) The neuralized homology repeat 1 domain of Drosophila neuralized mediates nuclear envelope association and delta-depen-dent inhibition of nuclear import. Journal of Molecular Biology, 375, 1125-1140. doi:10.1016/j.jmb.2007.11.043
[32] Innis, C.A., Shi, J. and Blundell, T.L. (2000) Evolutionary trace analysis of TGF-beta and related growth factors: Implications for site-directed muta-genesis. Protein Engineering, 13, 839-847. doi:10.1093/protein/13.12.839
[33] Bickerton, G.R., Higueruelo, A.P. and Blundell, T.L. (2011) Comprehensive, atomic-level characterization of structurally characterized protein-protein interactions: The PICCOLO database. BMC Bioinformatics, 12, 313. doi:10.1186/1471-2105-12-313
[34] Gupta D., (2010) Structural and functional study on Notch signaling pathway and its regulatory proteins. PhD Thesis, University of Cambridge, England.
[35] Glittenberg, M., et al. (2006) Role of conserved intracellular motifs in serrate signaling, cis-inhibition and endocytosis. EMBO Journal, 25, 4697-4706. doi:10.1038/sj.emboj.7601337
[36] Damodaran, S.A.C.S.R. (2001) Molecular basis for protein adsorption at fluid-fluid interfaces. In: Dickinson, E., Miller, R., Damodaran S. and Rao, C.S., Eds., Food Colloids: Fundamental of Formulation, Royal Society of Chemistry, London, 165-180.
[37] Beaufils, S., et al. (2008) Characterization of the tetratricopeptide-containing domain of BUB1, BUBR1, and PP5 proves that domain amphiphilicity over amino acid sequence specificity governs protein adsorption and interfacial activity. Journal of Physical Chemistry B, 112, 7984-7991. doi:10.1021/jp711222s
[38] Lee, S., et al. (2012) Characterization of spindle checkpoint kinase Mps1 reveals domain with functional and structural similarities to tetratricopeptide repeat motifs of Bub1 and BubR1 checkpoint kinases. Journal of Biological Chemistry, 287, 5988-6001.