[1] R. Atkinson, “Innovative Uses for Sandwich Constructions,” Reinforced Plastics, Vol. 41, No. 2, 1997, pp. 30-33.
[2] F. E. Penado, J. H. Clark III, J. P. Walton, R. C. Romeo and R. N. Martin, “Calculation of the Elastic Properties of a Triangular Cell Core for Lightweight Composite Mirrors,” Proceedings of SPIE: New Developments in Optomechanics, San Diego, 26-30 August 2007, pp. B1-B8.
[3] R. C. Romeo and R. N. Martin, “Progress in 1 m-Class Lightweight CFRP Composite Mirrors for the ULTRA Telescope,” Proceedings of SPIE: Optomechanical Technologies for Astronomy, Orlando, 24 May 2006, p. 62730S.
[4] J. Hohe and W. Becker, “Effective Stress-Strain Relations for Two-Dimensional Cellular Sandwich Cores: Homogenization, Material Models, and Properties,” Applied Mechanics Reviews, Vol. 55, No. 1, 2002, pp. 61-87. http://dx.doi.org/10.1115/1.1425394
[5] S. Kelsey, R. A. Gellatly and B. W. Clark, “The Shear Modulus of Foil Honeycomb Cores: A Theoretical and Experimental Investigation on Cores Used in Sandwich Construction,” Aircraft Engineering and Aerospace Technology, Vol. 30, No. 10, 1958, pp. 294-302. http://dx.doi.org/10.1108/eb033026
[6] G. Hoffman, “Poisson’s Ratio for Honeycomb Sandwich Cores,” Journal of the Aerospace Sciences, Vol. 25, No. 8, 1958, pp. 534-535. http://dx.doi.org/10.2514/8.7765
[7] J. Zhang and M. F. Ashby, “The Out-of-Plane Properties of Honeycombs,” International Journal of Mechanical Sciences, Vol. 34, No. 6, 1992, pp. 475-489. http://dx.doi.org/10.1016/0020-7403(92)90013-7
[8] L. J. Gibson and M. F. Ashby, “Cellular Solids: Structure and properties,” Pergamon Press, Oxford, 1988.
[9] I. G. Masters and K. E. Evans, “Models for the Elastic Deformation of Honeycombs,” Composite Structures, Vol. 35, No. 4, 1996, pp. 403-422. http://dx.doi.org/10.1016/S0263-8223(96)00054-2
[10] M. Grediac, “A Finite Element Study of the Transverse Shear in Honeycomb Cores,” International Journal of Solids and Structures, Vol. 30, No. 13, 1993, pp. 1777-1788. http://dx.doi.org/10.1016/0020-7683(93)90233-W
[11] B. Kim and R. M. Christensen, “Basic Two-Dimensional Core Types for Sandwich Structures,” International Journal of Mechanical Sciences, Vol. 42, No. 4, 2000, pp. 657-676. http://dx.doi.org/10.1016/S0020-7403(99)00028-4
[12] R. F. Gibson, “Principles of Composite Material Mechanics,” McGraw-Hill, New York, 1994.
[13] C. W. Schwingshackl, G. S. Aglietti and P. R. Cunningham, “Determination of Honeycomb Material Properties: Existing Theories and an Alternative Dynamic Approach,” Journal of Aerospace Engineering, Vol. 19, No. 3, 2006, pp. 177-183. http://dx.doi.org/10.1061/(ASCE)0893-1321(2006)19:3(177)
[14] C. C. Chamis, R. A. Aiello and P. L. N. Murthy, “Fiber Composite Sandwich Thermostructural Behavior: Computational Simulation,” Journal of Composites Technology & Research, Vol. 10, No. 3, 1988, pp. 93-99. http://dx.doi.org/10.1520/CTR10135J
[15] “COSMOS/M User Guide,” Version 2.95, Structural Research and Analysis Corporation, Los Angeles, 2007.
[16] J. R. Andrews, F. E. Penado, S. T. Broome, C. C. Wilcox, S. R. Restaino, T. Martinez, S. W. Teare and F. Santiago, “Characterization of the Lightweight Telescope Developed for the NPOI,” Proceedings of SPIE: Ground-Based and Airborne Telescopes, Orlando, 24 May 2006, p. 62673Q.