Main Features of a Complete Ultrasonic Measurement Model: Formal Aspects of Modeling of Both Transducers Radiation and Ultrasonic Flaws Responses

Show more

References

[1] G. S. Kino, “The Application of Reciprocity Theory to Scattering of Acoustic Waves by Flaws,” Journal of Applied Physics, Vol. 49, No. 6, 1978, pp. 3190-99.
doi:10.1063/1.325312

[2] B. A. Auld, “General Electromechanical Reciprocity Relations Applied to the Calculation of Elastic Wave Scattering Coefficients,” Wave Motion, Vol. 1, No. 1, 1979, pp. 3-10. doi:10.1016/0165-2125(79)90020-9

[3] R. B. Thompson and T.A. Gray, “A Model Relating Ultrasonic Scattering Measurements to Unbounded Medium Scattering Amplitudes,” Journal of the Acoustical Society of America, Vol. 74, No. 4, 1989, pp. 1279-1290.
doi:10.1121/1.390045

[4] L. W. Schmerr, Jr. and J. S. Song, “Ultrasonic Nondestructive Evaluation Systems: Models and Measurements,” Springer, New York, 2007.
doi:10.1007/978-0-387-49063-2

[5] CIVA Software Website. http://www-civa.cea.fr

[6] N. Gengembre and A. Lhémery, “Pencil Method in Elastodynamics. Application to Ultrasonic Field Computation,” Ultrasonics, Vol. 38, No. 1-8, 2000, pp. 495-499.
doi:10.1016/S0041-624X(99)00068-2

[7] N. Gengembre and A. Lhémery, “Calculation of Wideband Ultrasonic Fields Radiated by Water-Coupled Transducers into Heterogeneous and Anisotropic Media,” Review of Progress in QNDE, Vol. 19, 2000, pp. 977-984.

[8] R. Chapman, “Ultrasonic Scattering from Smooth Flat Cracks: An Elastodynamic Kirchhoff Diffraction Theory,” CEGB Report, North Western Region NDT Applications Centre, 1982.

[9] M. Darmon, P. Calmon and B. Bele, “An Integrated Model to Simulate the Scattering of Ultrasounds by Inclusions in Steels,” Ultrasonics, Vol. 42, No. 1-9, 2004, pp. 237-241. doi:10.1016/j.ultras.2004.01.015

[10] M. Darmon, S. Chatillon, S. Mahaut, L. Fradkin and A. Gautesen, “Simulation of Disoriented Flaws in a TOFD Technique Configuration Using GTD Approach,” 34th Annual Review of Progress in Quantitative Nondestructive Evaluation, 2008.

[11] V. Zernov, L. Fradkin and M. Darmon, “A Refinement of the Kirchhoff Approximation to the Scattered Elastic Fields,” Ultrasonics, Vol. 52, No. 17, 2012, pp. 830-835.
doi:10.1016/j.ultras.2011.09.008

[12] C. C. Mow and Y. H. Pao, “The Diffraction of Elastic Waves and Dynamic Stress Concentrations,” Rand Corporation, Santa Monica, 1971.

[13] C. Ying and R. Truell, “Scattering of a Plane Longitudinal Wave by a Spherical Obstacle in an Isotropically Elastic Solid,” Journal of Applied Physics, Vol. 27, No. 9, 1956, p. 1086. doi:10.1063/1.1722545

[14] M. Darmon, N. Leymarie, S. Chatillon and S. Mahaut “Modelling of scattering of ultrasounds by flaws for NDT,” In: A. Leger and M. Deschamps Eds., Ultrasonic Wave Propagation in Non Homogeneous Media, Springer Proceedings in Physics, Vol. 128, Springer, Berlin, 2009, p. 61-71.

[15] V. Cerveny, “Seismic Ray Theory,” Cambridge University Press, Cambridge, 2001.
doi:10.1017/CBO9780511529399

[16] N. Gengembre, “Modélisation du Champ Ultrasonore Rayonné Dans un Solide Anisotrope et Hétérogène par un Traducteur Immergé,” Université Paris, 1999.

[17] P. R. Stepanishen, “Transient Radiation from Pistons in an Infinite Planar Baffle,” Journal of the Acoustical Society of America, Vol. 49, No. 5B, 1971, pp. 1632-1638.

[18] B. Lu, M. Darmon, C. Potel, “Stochastic Simulation of the High-Frequency Wave Propagation in a Random Medium,” Journal of Applied Physics, Vol. 112, No. 5, 2012, pp. 054902.

[19] R. Raillon, et al. “Validation of CIVA Ultrasonic Simulation in Canonical Configurations,” 18th WCNDT, 2012.