OJNeph  Vol.3 No.3 , September 2013
Study of Dialyzer Membrane (Polyflux 210H) and Effects of Different Parameters on Dialysis Performance
Abstract: Problems frequently encountered in kidney malfunction include abnormal fluid levels in the body, increased acid levels, abnormal levels of Urea, Glucose, Endothelin, β2-Microglobulin and Complement Factor D. Parameters characterizing the structure of dialyzers are very important because they decide overall clearance of toxin molecules and at the same time should allow retaining useful molecules in the blood. In this paper, a cross sectional image of the dialyzer membrane with details of the porosity is presented. A multilayered membrane model with different porosity for each layer, describes the actual structure of Polyflux 210H membrane. This model is developed using Finite Element Software—COMSOL Multiphysics 4.3. A blood flow with substances like—Urea, Glucose, Endothelin, β2-Microglobulin, Complement Factor D and Albumin is introduced. For a certain blood flow rate, the toxins diffuse through the membrane and on the other side of the membrane a dialysate flow removes the toxins. Here, different parameters, such as flow rate of blood and dialysate, length and radius of the fiber are changed to simulate how these changes affect toxin clearance and the removal of useful molecules.
Cite this paper: M. Islam and J. Szpunar, "Study of Dialyzer Membrane (Polyflux 210H) and Effects of Different Parameters on Dialysis Performance," Open Journal of Nephrology, Vol. 3 No. 3, 2013, pp. 161-167. doi: 10.4236/ojneph.2013.33029.

[1]   R. M. Hakim, P. J. Held, D. C. Stannard, R. A. Wolfe, F. K. Port, J. T. Daugirdas and L. Agodoa, “Effect of the Dialysis Membrane on Mortality of Chronic Hemodialysis Patients,” Kidney International, Vol. 50, 1996, pp. 566-570. doi:10.1038/ki.1996.350

[2]   M. Hayama, F. Kohori and K. Sakai, “AFM Observation of Small Surface Pores of Hollow-Fiber Dialysis Membrane Using Highly Sharpened Probe,” Journal of Membrane Science, Vol. 197, No. 1-2, 2002, pp. 243-249. doi:10.1016/S0376-7388(01)00627-5

[3]   S. R. Borzou, M. Gholyaf, M. Zandiha, R. Amini, M. T. Goodarzi and B. Torkaman, “The Effect of Increasing Blood Flow Rate on Dialysis Adequacy in Hemodialysis Patients,” Saudi Journal of Kidney Diseases and Transplantation, Vol. 20, No. 4, 2009, pp. 639-642.

[4]   A. T. Azar, “Increasing Dialysate Flow Rate Increases Dialyzer Urea Clearance and Dialysis Efficiency: An in Vivo Study,” Saudi Journal of Kidney Diseases and Transplantation, Vol. 20, No. 6, 2009, pp. 1023-1029.

[5]   Gambro, “PolyfluxTM H–Gambro,” 2013.

[6]   T. Stocker, “Introduction to Climate Modelling,” Springer, Verlag Berlin Heidelberg, 2011, p. 57. doi:10.1007/978-3-642-00773-6

[7]   B. N. Preston, W. D. Comper, A. E. Hughes, I. Snook and W. V. Megen, “Diffusion of Dextran at Intermediate Concentrations,” Journal of the Chemical Society, Faraday Transactions 1, Vol. 78, 1982, pp. 1209-1221. doi:10.1039/f19827801209

[8]   R. B. Bird, W. E. Stewart and E. N. Lightfoot, “Transport Phenomena,” John Wiley & Sons, Hoboken, 1960. pp. 42-46.

[9]   K. Yamamoto, M. Hayama, M. Matsuda, T. Yahushiji, M. Fukuda, T. Miyasaka and K. Sakai, “Evaluation of Asymmetrical Structure Dialysis Membrane by Tortuous Capillary Pore Diffusion Model,” Journal of Membrane Science, Vol. 287, 2007, pp. 88-93. doi:10.1016/j.memsci.2006.10.018

[10]   R. Ouseph, C. A. Hutchison and R. A. Ward, “Differences in Solute Removal by Two High-Flux Membranes of Nominally Similar Synthetic Polymers,” Nephrology Dialysis Transplantation, Vol. 23, No. 5, 2008, pp. 1704-1712. doi:10.1093/ndt/gfm916

[11]   A. Hedayat, J. Szpunar, N. A. P. Kiran Kumar, R. Peace, H. Elmoselhi and A. Shoker, “Morphological Characterization of the Polyflux 210H Hemodialysis Filter Pores,” International Journal of Nephrology, 2012. doi:10.1155/2012/304135