IJG  Vol.4 No.7 , September 2013
Sea Ice Observations in Polar Regions: Evolution of Technologies in Remote Sensing
ABSTRACT

Evolution of remote sensing sensors technologies is presented, with emphasis on its suitability in observing the polar regions. The extent of influence of polar regions on the global climate and vice versa is the spearhead of climate change research. The extensive cover of sea ice has major impacts on the atmosphere, oceans, and terrestrial and marine ecosystems of the polar regions in particular and teleconnection on other processes elsewhere. Sea ice covers vast areas of the polar oceans, ranging from ~18 × 106 km2 to ~23 × 106 km2, combined for the Northern and Southern Hemispheres. However, both polar regions are witnessing contrasting rather contradicting effects of climate change. The Arctic sea ice extent is declining at a rate of 0.53 × 106 km2·decade–1, whereasAntarcticaexhibits a positive trend at the rate of 0.167 × 106 km2·decade–1. This work reviews literature published in the field of sea ice remote sensing, to evaluate and access success and failures of different sensors to observe physical features of sea ice. The chronological development series of different sensors on different satellite systems, sensor specifications and datasets are examined and how they have evolved to meet the growing needs of users is outlined. Different remote sensing technology and observational methods and their suitability to observe specific sea ice property are also discussed. A pattern has emerged, which shows that microwave sensors are inherently superior to visible and infrared in monitoring seasonal and annual changes in sea ice. Degree of successes achieved through remote sensing techniques by various investigators has been compared. Some technologies appear to work better under certain conditions than others, and it is now well accepted that there is no algorithm that is ideal globally. Contribution of Indian remote sensing satellites is also reviewed in the context of polar research. This review suggests different primary datasets for further research on sea ice features (sea ice extent, ice type, sea ice thickness, etc.). This work also examines past achievements and how far these capabilities have evolved and tap into current state of art/direction of sensor technologies. Effective monitoring and syntheses of past few decades of research pinpoint useful datasets for sea ice monitoring, thereby avoiding wastage of resources to find practical datasets to monitor these physically inaccessible regions.


Cite this paper
P. Teleti and A. Luis, "Sea Ice Observations in Polar Regions: Evolution of Technologies in Remote Sensing," International Journal of Geosciences, Vol. 4 No. 7, 2013, pp. 1031-1050. doi: 10.4236/ijg.2013.47097.
References
[1]   J. Turner, S. R. Colwell, G. J. Marshall, T. A. Lachlan-Cope, A. M. Carleton, P. D. Jones, V. Lagun, P. A. Reid and S. Iagovkina, “Antarctic Climate Change during the Last 50 Years,” International Journal of Climatology, Vol. 25, No. 3, 2005, pp. 279-294. doi:10.1002/joc.1130

[2]   R. G. Barry, “The Present Climate of the Arctic Ocean and Possible Past and Future States,” In: Y. Herman, Ed., The Arctic Seas: Climatology, Oceanography, Geology and Biology, Van Nostrand Reinhold, New York, 1989, pp. 1-46.

[3]   G. A. Maykut, “Energy Exchange over Young Sea Ice in the Central Arctic,” Journal of Geophysical Research, Vol. 83, No. C7, 1978, pp. 3646-3658. doi:10.1029/JC083iC07p03646

[4]   F. D. Carsey, “An Approach to Brine and Freshwater Fluxes Interpreted from Radar and Microwave Radiometer Data,” In: P. C. Chu and J. S. Gascard, Eds., Deep Convection and Deep Water Formation in the Oceans, Elsevier Science Publishers, New York, 1991, pp. 123-133. doi:10.1016/S0422-9894(08)70064-3

[5]   K. Aagaard and E. Carmack, “The Role of Sea Ice and Other Fresh Water in the Arctic Circulation,” Journal of Geophysical Research, Vol. 94, No. C10, 1989, pp. 14485-14498. doi:10.1029/JC094iC10p14485

[6]   W. Smith and E. Sakshaug, “Polar Oceanography, Part B, Chemistry, Biology, and Geology,” In: W. Smith, Ed., Polar Oceanography: Chemistry, Biology, and Geology, Academic Press, San Diego, 1990, pp. 477-517.

[7]   R. Stouffer, S. Manabe and K. Bryan, “Interhemispheric Asymmetry in Climate Response to a Gradual Increase of Atmospheric CO2,” Nature, Vol. 342, No. 6250, 1989, pp. 660-662. doi:10.1038/342660a0

[8]   H. J. Zwally, D. Yi, R. Kwok and Y. Zhao, “ICESat Measurements of Sea Ice Freeboard and Estimates of Sea Ice Thickness in the Weddell Sea,” Journal of Geophysical Research, Vol. 113, No. C2, 2008, p. 17 doi:10.1029/2007JC004284

[9]   O.M. Johannessen, W. J. Campbell, R. Shuchman, S. Sandven, P. Gloersen, J. A. Johannessen, E. G. Josberger and P. M. Haugan, “13. Microwave Study Programs of Air-Ice-Ocean Interactive Processes in the Seasonal Ice Zone of the Greenland and Barents Seas,” In: F. Carsey, Ed., Microwave Remote Sensing of Sea Ice, AGU Geophysical Monograph 68, Washington DC, 1992, pp. 261-289. doi:10.1029/GM068p0261

[10]   O.M. Johannessen, M. Miles and E. Bjørgo, “The Arctic’s Shrinking Sea Ice,” Nature, Vol. 376, No. 126, 1995, pp. 126-127. doi:10.1038/376126a0

[11]   O. M. Johannessen, E. V. Shalina and M. W. Miles, “Satellite Evidence for an Arctic Sea Ice cover in transformation,” Science, Vol. 286, No. 5446, 1999, pp. 1937-1939. doi:10.1126/science.286.5446.1937

[12]   O. M. Johannessen, V. Yu Alexandrov, I. Ye Frolov, S. Sandven, L. H. Pettersson, L. P. Bobylev, K. Kloster, V. G. Smirnov, Y. U. Mironov and N. G. Babich, “Remote Sensing of Sea Ice in the Northern Sea Route: Studies and Applications,” Praxis Publishing, UK, 2007, 472 p.

[13]   C. R. Jackson and J. R. Apel, “Synthetic Aperture Radar. Marine User’s Manual,” National Oceanic and Atmospheric Administration, Washington DC, 2004.

[14]   W. K. de la Mare, “Abrupt Mid-Twentieth-Century Decline in Antarctic Sea Ice Extent from Whaling Records,” Nature, Vol. 389, 1997, pp. 57-60. doi:10.1038/37956

[15]   S. Ackley, P. Wadhams, J. C. Comiso and A. P. Worby, “Decadal Decrease of Antarctic Sea Ice Extent Inferred from Whaling Records Revisited on the Basis of Historical and Modern Sea Ice Records,” Polar Research, Vol. 22, No. 1, 2003, pp. 19-25. doi:10.1111/j.1751-8369.2003.tb00091.x

[16]   C. Swithinbank, “Arctic Pack Ice from Below,” Proceedings of an International Conference, Reykjavik, 10-13 May 1972, pp. 246-254.

[17]   D. A. Rothrock, Y. Yu and G. A. Maykut, “Thinning of the Arctic Sea-Ice Cover,” Geophysical Research Letters, Vol. 26, No. 23, 1999, pp. 3469-3472. doi:10.1029/1999GL010863

[18]   P. Winsor, “Arctic Sea Ice Thickness Remained Constant during the 1990s,” Geophysical Research Letters, Vol. 28, No. 6, 2001, pp. 1039-1041. doi:10.1029/2000GL012308

[19]   A. P. Worby, I. Allison and V. Dirita, “Antarctic CRC Research Report: Cooperative Research Centre for the Antarctic and Southern Ocean Environment, Vol. 14-15,” Antarctic CRC, Sandy Bay, 1999.

[20]   P. Gloersen, W. J. Campbell, D. J. Cavalieri, J. C. Comiso, C. L. Parkinson and H. J. Zwally, “NASA SP-511: Arctic and Antarctic Sea Ice, 1978-1987: Satellite Passive-Microwave Observations and Analysis,” NASA, Washington DC, 1992.

[21]   D. K. Hall, J. R. Key, K. A. Casey, G. A. Riggs and D. J. Cavalieri, “Sea Ice Surface Temperature Product from MODIS,” IEEE Transactions on Geosciences and Remote Sensing, Vol. 42, No. 5, 2004, pp. 1076-1087. doi:10.1109/TGRS.2004.825587

[22]   D. J. Cavalieri, P. Gloersen, C. E. Parkinson, H. J. Zwally and J. C. Comiso, “Observed Hemispheric Asymmetry in Global Sea Ice Changes,” Science, Vol. 278, No. 5340, 1997, pp. 1104-1106.

[23]   D. J. Cavalieri, C. L. Parkinson, N. DiGirolamo and A. Ivanoff, “Intersensor Calibration between F13 SSMI and F17 SSMI for Global Sea Ice Data Records,” IEEE Geosciences and Remote Sensing Letters, Vol. 9, No. 2, 2012, pp. 233-236. doi:10.1109/LGRS.2011.2166754

[24]   O. M. Johannessen, S. Sandven, K. Kloster, L. H. Pettersson, V. V. Melentyev, L. Bobylev and K. Y. Kondratyev, “ERS-1/2 SAR Monitoring of Dangerous Ice Phenomena along the Western Part of the Northern Sea Route,” International Journal of Remote Sensing, Vol. 18, No. 12, 1997, pp. 2477-2481. doi:10.1080/014311697217422

[25]   S. M. Bhandari, N. K. Vyas, M. K. Dash, A. Khanolkar, N. Sharma, N. Khare and P. C. Pandey, “Simultaneous MSMR and SSM/I Observations and Analysis of Sea Ice Characteristics over the Antarctic Region,” International Journal of Remote Sensing, Vol. 26, No. 15, 2005, pp. 3123-3136. doi:10.1080/01431160500104376

[26]   K. C. Sahu, “Textbook of Remote Sensing and Geographical Information Systems,” Atlantic Publishers, New Delhi, 2007, pp. 153-160.

[27]   H. J. Zwally, J. C. Comiso, C. L. Parkinson, W. J. Campbell, F. D. Carsey and P. Gloersen, “NASA SP-459: Antarctic Sea Ice, 1973-1976: Satellite Passive-Microwave Observations,” NASA, Washington DC, 1983.

[28]   C. L. Parkinson, J. C. Comiso, H. J. Zwally, D. J. Cavalieri, P. Gloersen and W. J. Campbell, “NASA SP-489: Arctic Sea Ice, 1973-1976: Satellite Passive-Microwave Observations,” NASA, Washington DC, 1987.

[29]   H. J. Zwally, J. C. Comiso, C. L. Parkinson, D. J. Cavalieri and P. Gloersen, “Variability of Antarctic Sea Ice 1979-1998,” Journal of Geophysical Research, Vol. 107, No. C5, 2002, pp. 9-1-9-19.

[30]   H. B. Gordon and S. P. O’Farrell, “Transient Climate Change in the CSIRO Coupled Model with Dynamic Sea Ice,” Monthly Weather Review, Vol. 125, No. 5, 1997, pp. 875-907. doi:10.1175/1520-0493(1997)125<0875:TCCITC>2.0.CO;2

[31]   S. Manabe, M. J. Spelman and R. J. Stouffer, “Transient Responses of a Coupled Ocean-Atmosphere Model to Gradual Changes of Atmospheric CO2, Part II, Seasonal Response,” Journal of Climate, Vol. 5, No. 2, 1992, pp. 105-126. doi:10.1175/1520-0442(1992)005<0105:TROACO>2.0.CO;2

[32]   N. K. Vyas, M. K. Dash, S. M. Bhandari, N. Khare, A. Mitra and P. C. Pandey, “Large Scale Antarctic Features Captured by Multi-Frequency Scanning Microwave Radiometer On-Board OCEANSAT-1,” Current Science, Vol. 80, No. 10, 2001, pp. 1319-1322.

[33]   N. Khare, N. Sharma, S. M. Bhandari and N. K. Vyas “Utility of OCEANSAT-1 OCM Data in Deciphering Antarctic Features,” Current Science, Vol. 93, No. 3, 2007, pp. 292-294.

[34]   F. Nishio and J. C. Comiso, “The Polar Sea Ice Cover from Aqua/AMSR-E,” Proceedings of the 25th International Geosciences and Remote Sensing Symposium (IGARSS’05), Melbourne, 25-29 July 2005, pp. 4933-4937.

[35]   L. Ning, F. Xie, W. Gu, Y. Xu, S. Huang, S. Yuan, W. Cui and J. Levy, “Using Remote Sensing to Estimate Sea Ice Thickness in the Bohai Sea, China Based on Ice Type,” International Journal of Remote Sensing, Vol. 30, No. 17, 2009, pp. 4539-4552,

[36]   H. Su and Y. Wang, “Using MODIS Data to Estimate Sea Ice Thickness in the Bohai Sea (China) in the 2009-2010 Winter,” Journal Geophysical Research, Vol. 117, No. C10, 2012, Article ID: C10018. doi:10.1029/2012JC008251.

[37]   X. Wang, J. Key and Y. Liu, “A Thermodynamic Model for Estimating Sea and Lake Ice Thickness with Optical Satellite Data,” Journal Geophysical Research, Vol. 115, No. C12, 2010, Article ID: C12035. doi:10.1029/2009JC005857.

[38]   S. Liang, “Narrowband to Broadband Conversions of Land Surface Albedo: I. Algorithms,” Remote Sensing of Environment, Vol. 76, No. 2, 2001, pp. 213-238. doi:10.1016/S0034-4257(00)00205-4.

[39]   S. Liang, “A Direct Algorithm for Estimating Land Surface Broadband Albedos from MODIS Imagery,” IEEE Transactions on Geosciences and Remote Sensing, Vol. 41, No. 1, 2003, pp. 136-145.

[40]   Y. Yu and D. A. Rothrock, “Thin Ice Thickness from Satellite Thermal Imagery,” Journal Geophysical Research, Vol. 101, No. C11, 1996, pp. 25753-25766.

[41]   L. Kaleschke, X. Tian-Kunze, N. Maaß, M. Makynen and M. Drusch, “Sea Ice Thickness Retrieval from SMOS Brightness Temperatures during the Arctic Freeze-Up Period,” Geophysical Research Letters, Vol. 39, No. 5, 2012, pp. 1-5. doi:10.1029/2012GL050916.

[42]   M. Makynen, B. Cheng and M. Simila, “On the Accuracy of Thin-Ice Thickness Retrieval Using MODIS Thermal Imagery over Arctic First-Year Ice,” Annals of Glaciology, Vol. 54, No. 62, 2013, pp. 87-96. doi:10.3189/2013AoG62A166.

[43]   N. T. Kurtz and T. Markus, “Satellite Observations of Antarctic Sea Ice Thickness and Volume,” Journal Geophysical Research, Vol. 117, No. C08, 2012, Article ID: C08025. doi:10.1029/2012JC008141.

[44]   A. Mitra, I. M. L. Das, M. K. Dash, S. M. Bhandari and N. K. Vyas, “Impact of Ice-Albedo Feedback on Hemispheric Scale Sea-Ice Melting Rates in the Antarctic,” Current Science, Vol. 94, No. 8, 2001, p. 1044.

[45]   M. Shokr, A. Lambe and T. Agnew, “A New Algorithm (ECICE) to Estimate Ice Concentration From Remote Sensing Observations: An Application to 85-GHz Passive Microwave Data,” IEEE Transactions on Geosciences and Remote Sensing, Vol. 46, No. 12, 2008, pp. 4104-4121. doi:10.1109/TGRS.2008.2000624

[46]   S. G. Beaven and S. P. Gogineni, “Fusion of Satellite SAR with Passive Microwave Data for Sea Ice Remote Sensing,” In: C. Tsatsoulis and R. Kwok, Eds., Analysis of SAR Data of the Polar Oceans: Recent Advances, Springer, Berlin, 1998, pp. 91-109. doi:10.1007/978-3-642-60282-5_5

[47]   M. Lythe, A. Hauser and G. Wendler, “Classification of Sea Ice Types in the Ross Sea, Antarctica from SAR and AVHRR Imagery,” International Journal of Remote Sensing, Vol. 20, No. 15-16, 1999, pp. 3073-3085. doi:10.1080/014311699211624

[48]   N. Y. Zakhvatkina, V. Y. Alexandrov, O. M. Johannessen, S. Sandven and I. Y. Frolov, “Classification of Sea Ice Types in ENVISAT Synthetic Aperture Radar Images,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 51, No. 5, 2013, pp. 2587-2600. doi:10.1109/TGRS.2012.2212445.

[49]   W. Dierking and T. Busche, “Sea Ice Monitoring by L-Band SAR: An Assessment Based on Literature and Comparisons of JERS-1 and ERS-1 Imagery,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No.2, 2006, pp. 957-970, doi:10.1109/TGRS.2005.861745

[50]   A. W. Nolin, F. M. Fetterer and T. A. Scambos, “Surface Roughness Characterizations of Sea Ice and Ice Sheets: Case Studies with MISR Data,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 40, No. 7, 2002, pp. 1605-1615. doi:10.1109/TGRS.2002.801581

[51]   H. Bi, X. F. Yang, Z. W. Li and X. Zhou, “Sea Ice Small-Scale Surface Roughness Estimation Based on AMSR-E Observations,” International Journal of Remote Sensing, Vol. 34, No. 12, 2013, pp. 4425-4448.

[52]   N. T. Kurtz, T. Markus, D. J. Cavalieri, W. Krabill, J. G. Sonntag and J. Miller, “Comparison of ICESat Data with Airborne Laser Altimeter Measurements over Arctic Sea Ice,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 7, 2008, pp. 1913-1924. doi:10.1109/TGRS.2002.801581

[53]   K. F. Kunzi, S. Patil and H. Rott, “Snow-Cover Parameters Retrieved from Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) Data,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 20, No. 4, 1982, pp. 452-467. doi:10.1109/TGRS.1982.350411

[54]   H. Rott, K. Kunzi and S. Patil, “Temporal and Spatial Variations of Snow Properties Derived from Nimbus-7 SMMR Data,” Proceedings of 20th URSI General Assembly, Symposium of Remote Sensing, Washington DC, 10-19 August 1981.

[55]   A. T. C. Chang, J. L. Foster, D. K. Hall, A. Rango and B. K. Hartline, “Snow Water Equivalent Estimation by Microwave Radiometry,” Cold Regions Science and Technology, Vol. 5, No. 3, 1982, pp. 259-267. doi:10.1016/0165-232X(82)90019-2

[56]   B. Goodison, “Determination of Areal Snow Water Equivalent on the Canadian Prairies Using Passive Microwave Satellite Data,” Proceedings of the IGARSS’89 Symposium, Vancouver, 10-14 July 1989, pp. 1243-1246.

[57]   B. E. Goodison and A. E. Walker, “Canadian Development and Use of Snow Cover Information from Passive Microwave Satellite Data,” In: B. Choudhury, et al., Eds., Passive Microwave Remote Sensing of Land—Atmosphere Interactions, VSP Press, 1995, pp. 245-262.

[58]   C. Matzler, “Microwave Sensors for Measuring Avalanche-Critical Snow Parameters,” In: B. Salm and H. Gubler, Eds., International Symposium on Avalanche Formation, Movement and Effects, IAHS Publication, Davos, 1987, pp. 149-160.

[59]   A. E. Walker and A. Silis, “Snow-Cover Variations over the MacKenzie River Basin, Canada, Derived from SSM/I Passive Microwave Satellite Data,” Annals of Glaciology, Vol. 34, No. 1, 2002, pp. 8-14. doi:10.3189/172756402781817680

[60]   R. Bindschadler, H. Choi, C. Shuman and T. Markus, “Detecting and Measuring New Snow Accumulation on Ice Sheets by Satellite Remote Sensing,” Remote Sensing of Environment, Vol. 98, No. 4, 2005, pp. 388-402. doi:10.1016/j.rse.2005.07.014

[61]   A. T. C. Chang and L. S. Chiu, “Global Snow Variation Derived from SMMR: Preliminary Results,” In: S. F. Ackley and W. F. Weeks, Eds., Sea Ice Properties and Processes, CRREL Monogram, U.S. Army Corps of Eng., Hanover, 1990, pp. 213-217.

[62]   T. Markus and D. J. Cavalieri, “Snow Depth Distribution over Sea Ice in the Southern Ocean from Satellite Passive Microwave Data,” In: M. O. Jeffries, Ed., Antarctic Sea Ice Physical Processes, Interactions and Variability, Antarctic Research Series, Vol. 74, AGU, Washington DC, 1998, pp. 19-40. doi:10.1029/AR074p0019

[63]   V. Renganathan, “Arctic Sea Ice Freeboard Heights from Satellite Altimetry,” Ph.D. Thesis, University of Calgary, Calgary, 2010.

[64]   J. C. Comiso, D. J. Cavalieri and T. Markus, “Sea Ice Concentration, Ice Temperature, and Snow Depth Using AMSR-E Data,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No. 2, 2003, pp. 243-252. doi:10.1109/TGRS.2002.808317

[65]   R. E. J. Kelly and A. T. C Chang, “Development of a Passive Microwave Global Snow Depth Retrieval Algorithm for SSM/I and AMSR-E Data,” Radio Science, Vol. 38, No. 4, 2003, p. 8076. doi:10.1029/2002RS002648

[66]   N. T. Kurtz, T. Markus, D. J. Cavalieri, L. C. Sparling, W. B. Krabill, A. J. Gasiewski and J. G. Sonntag, “Estimation of Sea Ice Thickness Distributions through the Combination of Snow Depth and Satellite Laser Altimetry Data,” Journal Geophysical Research, Vol. 114, No. C10, 2009, pp. 1-16. doi:10.1029/2009JC005292

[67]   S. V. Nghiem, K. Steffen, R. Kwok and W. Y. Tsai, “Detection of Snowmelt Regions on the Greenland Ice Sheet Using Diurnal Backscatter Change,” Journal of Glaciology, Vol. 47, No. 159, 2001, pp. 539-547. doi:10.3189/172756501781831738

[68]   J. Foster, D. Hall and J. Eylander, “A New Blended Snow Product Using Visible, Microwave and Scatterometer Satellite Data,” Proceeding of IEEE International Geocience and Remote Sensing Symposium (IGARSS 2009), Cape Town, 12-17 July 2009, pp. II-559-II-562.

[69]   R. Kwok, A. Schweiger, D. A. Rothrock, S. Pang and C. Kottmeier, “Sea Ice Motion from Satellite Passive Microwave Imagery Assessed with ERS SAR and Buoy Motions,” Journal Geophysical Research, Vol. 103, No. C4, 1998, pp. 8191-8214. doi:10.1029/97JC03334

[70]   A. K. Liu and D. J. Cavalieri, “On Sea Ice Drift from the Wavelet Analysis of the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager (SSM/I) Data,” International Journal of Remote Sensing, Vol. 19, No. 7, 1998, pp. 1415-1423. doi:10.1080/014311698215522

[71]   A. K. Liu and Y. Zhao, “Sea Ice Motion from Wavelet analysis of Satellite Data,” Proceedings of the Eighth International Offshore and Polar Engineering Conference, Vol. 3, Montréal, May 24-29 1998, pp. 30-35.

[72]   M. R. Drinkwater, “Active Microwave Remote Sensing Observations of Weddell Sea Ice,” In: M. O. Jeffries, Ed., Antarctic Sea Ice: Physical Processes, Interactions and Variability, Antarctic Research Series, Vol. 74, AGU, Washington DC, 1998, pp. 187-212. doi:10.1029/AR074p0187

[73]   J. Maslanik, T. Agnew, M. Drinkwater, W. Emery, C. Fowler, R. Kwok and A. Liu, “Summary of Ice-Motion Mapping Using Passive Microwave Data,” NSIDC Special report-8, National Snow and Ice Data Centre, CIRES, Boulder, 1998.

[74]   S. Schwegmann, C. Haas, C. Fowler and R. Gerdes, “A Comparison of Satellite-Derived Sea Ice Motion with Drifting Buoy Data in the Weddell Sea, Antarctica,” Annals of Glaciology, Vol. 52, No. 57, 2010, pp. 103-110. doi:10.3189/172756411795931813

[75]   R. Yaguchi and K. Cho, “Validation of Sea Ice Drift Vector Extraction from AMSR-E and SSM/I Data by Using MODIS Data,” Journal of The Remote Sensing Society of Japan, Vol. 29, No. 1, 2009, pp. 242-252.

[76]   F. Girard-Ardhuin and R. Ezraty, “Enhanced Arctic Sea Ice Drift Estimation Merging Radiometer and Scatterometer Data,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 7, 2012, pp. 2639-2648. doi:10.1109/TGRS.2012.2184124

[77]   C. Schmitt, C. Kottmeier, S. Wassermann and M. Drinkwater, “Atlas of Antarctic Sea Ice Drift,” Institut für Meteorologie und Klimaforschung, Universitat Karlsruhe 2004.

[78]   B. J. Davies, J. L. Carrivick, N. F. Glasser, M. J. Hambrey and J. L. Smellie, “Variable Glacier Response to Atmospheric Warming, Northern Antarctic Peninsula, 1988-2009,” The Cryosphere, Vol. 6, No. 5, 2012, pp. 1031-1048. doi:10.5194/tc-6-1031-2012

[79]   S. Gille, “Decadal-Scale Temperature Trends in the Southern Hemisphere Ocean,” Journal of Climate, Vol. 21, No. 18, 2002, pp. 4749-4765. doi:10.1175/2008JCLI2131.1

[80]   D. W. J. Thompson and S. Solomon, “Interpretation of Recent Southern Hemisphere Climate Change,” Science, Vol. 296, No. 5569, 2002, pp. 895-899.

 
 
Top