Equivalent-Source from 3D Inversion Modeling for Magnetic Data Transformation

Hendra Grandis^{*}

Show more

References

[1] C. A. Mendonca and J. B. C. Silva, “The Equivalent Data Concept Applied to the Interpolation of Potential Field Data,” Geophysics, Vol. 59, No. 5, 1994, pp. 722-732.
doi:10.1190/1.1443630

[2] C. A. Mendonca and J. B. C. Silva, “Interpolation of Potential-Field Data by Equivalent Layer and Minimum Curvature: A Comparative Analysis,” Geophysics, Vol. 60, No. 2, 1995, pp. 399-407. doi:10.1190/1.1443776

[3] G. R. J. Cooper, “Gridding Gravity Data Using an Equivalent Layer,” Computer and Geosciences, Vol. 26, No. 2, 2000, pp. 227-233.
doi:10.1016/S0098-3004(99)00089-8

[4] L. Cordell, “A Scattered Equivalent-Source Method for Interpolation and Gridding of Potential-Field Data in Three Dimensions,” Geophysics, Vol. 57, No. 4, 1992, pp. 629-636. doi:10.1190/1.1443275

[5] D. A. Emilia, “Equivalent Sources Used as an Analytic Base for Processing Total Magnetic Field Profiles,” Geophysics, Vol. 38, No. 2, 1973, pp. 339-348.
doi:10.1190/1.1440344

[6] J. B. C. Silva, “Reduction to the Pole as an Inverse Problem and Its Application to Low-Latitude Anomalies,” Geophysics, Vol. 51, No. 2, 1986, pp. 369-382.
doi:10.1190/1.1442096

[7] W. Menke, “Geophysical Data Analysis: Discrete Inverse Theory,” 3rd Edition, Academic Press, London, 2012.

[8] R. J. Blakely, “Potential Theory in Gravity and Magnetic Applications,” Cambridge University Press, Cambridge, 1995. doi:10.1017/CBO9780511549816

[9] W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, “Numerical Recipes: The Art of Scientific Computing,” 2nd Edition, Cambridge University Press, Cambridge, 1997.

[10] K. I. Kis, “Transfer Properties of the Reduction of Magnetic Anomalies to the Pole and to the Equator,” Geophysics, Vol. 55, No. 9, 1990, pp. 1141-1147.
doi:10.1190/1.1442930

[11] S.-Z. Xu, C.-H. Yang, S. Dai and D. Zhang, “A New Method for Continuation of 3D Potential Fields to a Horizontal Plane,” Geophysics, Vol. 68, No. 6, 2003, pp. 1917-1921. doi:10.1190/1.1635045

[12] Y. Li and D. W. Oldenburg, “3-D Inversion of Magnetic Data,” Geophysics, Vol. 61, No. 2, 1996, pp. 394-408.
doi:10.1190/1.1443968

[13] M. Fedi and A. Rapolla, “3-D Inversion of Gravity and Magnetic Data with Depth Resolution,” Geophysics, Vol. 64, No. 2, 1999, pp. 452-460. doi:10.1190/1.1444550

[14] A. H. Saad, “Understanding Gravity Gradients—A Tutorial,” Leading Edge, Vol. 25, No. 8, 2006, pp. 942-949.
doi:10.1190/1.2335167

[15] G. Barnes, “Interpolating the Gravity Field Using Full Tensor Gradient Measurements,” First Break, Vol. 97, No. 4, 2012, pp. 97-101.

[16] K. L. Mickus and J. H. Hinojosa, “The Complete Gravity Gradient Tensor Derived From The Vertical Component of Gravity: A Fourier Transform Technique,” Journal of Applied Geophysics, Vol. 46, No. 3, 2001, pp. 156-176.
doi:10.1016/S0926-9851(01)00031-3

[17] D. W. Oldenburg and Y. Li, “On ‘3-D Inversion of Gravity and Magnetic Data with Depth Resolution’ (M. Fedi and A. Rapolla, Geophysics, 64, 452-460),” Geophysics, Vol. 68, No. 1, 2003, pp. 400-402.
doi:10.1190/1.1552007