Back
 OJA  Vol.3 No.3 , September 2013
Propagation of Acoustic Wave inside the Carbon Nanotube: Comparative Study with Other Hexagonal Material
Abstract: Carbon nanotube is a novel and more explored material. In this paper, ultrasonic acoustic velocity of the carbon nanotube has been calculated along unique axis at room temperature. For the evaluations of ultrasonic properties, second and third-order elastic constants have been computed from Lennard-Jones interaction potential. Attenuation of ultrasonic waves due to phonon-phonon interaction is predominant over thermoelastic loss. Carbon nanotube shows the unique behavior with the chiral number. Chiral number not only affect the band gap and tube radius of the carbon nanotube but also affect the mechanical properties like stiffness, bulk modulus, shear modulus of the tube. The peculiar behavior is obtained at 55°. Due to their least thermal relaxation time and highest Debye average velocity. Results are also compared with other hexagonal metallic materials which present in periods and group of the periodic table. They show the optimum behavior with other hexagonal materials.
Cite this paper: S. Srivastava, "Propagation of Acoustic Wave inside the Carbon Nanotube: Comparative Study with Other Hexagonal Material," Open Journal of Acoustics, Vol. 3 No. 3, 2013, pp. 53-61. doi: 10.4236/oja.2013.33009.
References

[1]   A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. Mcientyre, P. McEuen, M. Lundstrom and H. Dai, “High K-Dielectric for Advanced Carbon Nanotube Transistors and Logic Gates,” Nature Materials, Vol. 1, No. 1, 2002, pp. 241-246.

[2]   J. Wildoer, L. Venema, A. Rinzler, R. Smalley and C. Dekker, “Electronic Structure of Atomically Resolved Carbon Nanotubes,” Nature, Vol. 391, No. 6662, 1998, pp. 59-62. doi:10.1038/34139

[3]   R. Bacon, “Growth, Structure, and Properties of Graphite Whiskers,” Journal of Applied Physics, Vol. 31, No. 2, 1960, pp. 283-290. doi:10.1063/1.1735559

[4]   Y.-H. Li and J.-T. Lue, “Dielectric Constants of Single-Wall Carbon Nanotubes at Various Frequencies” Journal of Nanoscience and Nanotechnology, Vol. 7, No. 8, 2007, pp. 1-4.

[5]   M. Rosen, “Elastic Moduli and Ultrasonic Attenuation of Gd, Tb, Dy, Ho and Eb from 4.2 to 300K,” Physical Review, Vol. 174, No. 2, 1968, pp. 504-514. doi:10.1103/PhysRev.174.504

[6]   Kailash, K. M. Raju, S. K. Shrivastava and K. S. Kushwaha, “Anharmonic Properties of Rocksalt Structure Solids,” Physica B: Condensed Matter, Vol. 390, No. 1-2, 2007, pp, 270-280. doi:10.1016/j.physb.2006.08.024

[7]   A. K. Yadav, R. R. Yadav, D. K. Pandey and D. Singh, “Ultrasonic Study of Fission Products Precipitated in the Nuclear Fuel,” Materials Letters, Vol. 62, No. 17-18, 2008, pp. 3258-3261. doi:10.1016/j.matlet.2008.02.036

[8]   C. Oligschleger, R. O. Jones, S. M. Reimann and H. R. Schober, “Model Interatomic Potential for Simulations in Selenium,” Physical Review B, Vol. 53, No. 10, 1996, pp. 6165-6173. doi:10.1103/PhysRevB.53.6165

[9]   D. K. Pandey, D. Singh and R. R. Yadav, “Ultrasonic Wave Propagation in 3rd Group Nitrides,” Applied Acou- stics, Vol. 68, No. 7, 2007, pp. 766-777. doi:10.1016/j.apacoust.2006.04.004

[10]   D. K. Pandey, P. K. Yadawa and R. R. Yadav, “Acoustic Wave Propagation in Laves-Phase Compounds,” Materi- als Letters, Vol. 61, No. 25, 2007, pp. 4747-4751. doi:10.1016/j.matlet.2007.03.031

[11]   Cz. Jasiukiewicz and V. Karpus, “Debye Temperature of Cubic Crystals,” Solid State Communications, Vol. 128, No. 5, 2003, pp. 167-169.

[12]   H. J. Chen, Q. Z. Xue, Q. B. Zheng, J. Xie and K. Y. Yan, “Influence of Nanotube Chirality, Temperature, and Chemical Modification on the Interfacial Bonding between Carbon Nanotubes and Polyphenylacetylene,” The Journal of Physical Chemistry C, Vol. 112, No. 2, 2008, pp. 16514-16520.

[13]   G. H. Gao, T. Cagin and W. A. Goddard, “Energetics, Structure, Mechanical and Vibrational Properties of Single-walled Carbon Nanotubes,” Nanotechnology, Vol. 9, No. 3, 1998, pp. 184-191.

[14]   A. Nareth, “Nuclear Magnetic Resonance in Hexagonal Lanthanum Metal: Knight Shifts, Spin Relaxation Rates, and Quadrupole Coupling Constants,” Physical Review, Vol. 179, No. 1, 1969, pp. 359- 368.

[15]   D. Tromans, “Elastic Anisotropy of HCP Metal Crystals and Polycrystals,” IJRRAS, Vol. 6, No. 4, 2011, pp. 462-183.

 
 
Top