AM  Vol.4 No.9 A , September 2013
Hybrid Predictive Control Based on High-Order Differential State Observers and Lyapunov Functions for Switched Nonlinear Systems
ABSTRACT

In this paper, a hybrid predictive controller is proposed for a class of uncertain switched nonlinear systems based on high-order differential state observers and Lyapunov functions. The main idea is to design an output feedback bounded controller and a predictive controller for each subsystem using high-order differential state observers and Lyapunov functions, to derive a suitable switched law to stabilize the closed-loop subsystem, and to provide an explicitly characterized set of initial conditions. For the whole switched system, based on the high-order differentiator, a suitable switched law is designed to ensure the whole closed-loop’s stability. The simulation results for a chemical process show the validity of the controller proposed in this paper.


Cite this paper
B. Su, G. Qi and B. Wyk, "Hybrid Predictive Control Based on High-Order Differential State Observers and Lyapunov Functions for Switched Nonlinear Systems," Applied Mathematics, Vol. 4 No. 9, 2013, pp. 32-42. doi: 10.4236/am.2013.49A006.
References
[1]   J. Hespanha and A. S. Morse, “Switching between Stabi lizing Controllers,” Automatica, Vol. 38, No. 11, 2002, pp. 1905-1917. doi:10.1016/S0005-1098(02)00139-5

[2]   S. L. D. Kothare and M. Morari, “Contractive Model Pre dictive Control for Constrained Nonlinear Systems,” IEEE Transactions on Automatic Control, Vol. 45, No. 6, 2000, pp. 1053-1071.
doi:10.1109/9.863592

[3]   D. Q. Mayne, J. B. Rawlings and P. O. M. Rao, “Con strained Model Predictive Control: Stability and Optimal ity,” Automatica, Vol. 36, No. 6, 2000, pp. 789-814. doi:10.1016/S0005-1098(99)00214-9

[4]   M. S. Branicky, “Multiple Lyapunov Functions and Other Analysis Tools for Switched and Hybrid Systems,” IEEE Transactions on Automatic Control, Vol. 43, No. 4, 1998, pp. 475-482.
doi:10.1109/9.664150

[5]   P. Mhaskar, N. H. El-Farra and P. D. Christofides, “Ro bust Hybrid Predictive Control of Nonlinear Systems,” Automatica, Vol. 41, No. 2, 2005, pp. 209-217. doi:10.1016/j.automatica.2004.08.020

[6]   P. Mhaskar, N. H. El-Farra and P. D. Christofides, “Stabi lization of Nonlinear Systems with State and Control Con straints Using Lyapunov-Based Predictive Control,” Sys tems and Control Letters, Vol. 55, No. 8, 2006, pp. 650-659. doi:10.1016/j.sysconle.2005.09.014

[7]   P. Mhaskar, N. H. El-Farra and P. D. Christofides, “Pre dictive Control of Switched Nonlinear Systems with Sche duled Mode Transitions,” IEEE Transactions on Automa tic Control, Vol. 50, No. 11, 2005, pp. 1670-1680. doi:10.1109/TAC.2005.858692

[8]   S. Baili and L. Shaoyuan, “Constrained Predictive Con trol for Nonlinear Switched Systems with Uncertainty,” Acta Automatica Sinica, Vol. 34, No. 9, 2008, pp. 1141-1147

[9]   N. H. E1-Farra and P. D. Christofides, “Bounded Robust Control of Constrained Multivariable Nonlinear Proc esses,” Chemical Engineering Science, Vol. 58, No. 13, 2003, pp. 3025-3047. doi:10.1016/S0009-2509(03)00126-X

[10]   N. H. E1-Farra, P. Mhaskar and P. D. Christofides, “Out put Feedback Control of Switched Nonlinear Systems Us ing Multiple Lyapunov Functions,” Systems & Control Letters, Vol. 54, No. 12, 2005, pp. 1163-1182. doi:10.1016/j.sysconle.2005.04.005

[11]   B. L. Su, S. Y. Li and Q. M. Zhu, “The Design of Predic tive Control with Characterized Set of Initial Condition for Constrained Switched Nonlinear System,” Science in China Series E-Technological Sciences, Vol. 52, No. 2, 2009, pp. 456-466. doi:10.1007/s11431-008-0249-8

[12]   G. Y. Qi, Z. Chen and Z. Yuan, “Adaptive High Order Dif ferential Feedback Control for Affine Nonlinear System,” Chaos, Solitons & Fractals, Vol. 37, 2008, pp. 308-315. doi:10.1016/j.chaos.2006.09.027

[13]   G. Y. Qi, Z. Chen and Z. Yuan, “Model Free Control of Affine Chaotic System,” Physics Letters A, Vol. 344, No. 2-4, 2005, pp 189-202. doi:10.1016/j.physleta.2005.06.073

[14]   G. Y. Qi, M. A. van Wyk and B. J. van Wyk, “Model-Free Differential States Observer for Nonlinear Affine Sys tem,” The 7th IFAC Symposium on Nonlinear Control Systems, 21-24 August 2007, Pretoria, pp. 984-989

 
 
Top