OJRad  Vol.3 No.3 , September 2013
Acrylic Customized X-Ray Positioning Stent for Prospective Bone Level Analysis in Long-Term Clinical Implant Studies
Abstract: Objectives: This paper describes a technique to produce individualized X-ray positioning devices for intraoral digital imaging of dental implants with long-term stability. Materials and Methods: An X-ray positioning device was built for Gendex? Visualix? eHD sensor, using the Dentsply rinn XCP-DS? system individualized by the incorporation of the bite piece within an acrylic stent to perform successive standardized radiographs to 16 patients. X-ray tube stabilization was achieved with polivinylsiloxane. Series of 3 radiographs were taken to each patient in different moments. Specific linear measurements as the implant diameter (mesio-distal width) and the height between consecutive threads (thread pitch) were made to all radiographs to determine the reproducibility and accuracy of the procedure. Results: The intraclass correlation coefficient for the mesio-distal width was 0.964 [(0.920 - 0.986) 95% CI] (p < 0.01) and 0.990 [(0.976 - 0.996) 95% CI] (p < 0.01) for the thread pitch. Bland-Altman plots comparing implant diameter showed mean bias of 0.01 ± 0.01975, 0.01 ± 0.02243 and 0.0006 ± 0.025 for groups 1 - 2, 1 - 3 and 2 - 3 respectively. Mean bias of 0.0024 ± 0.00552, 0.0027 ± 0.00552 and 0.0003 ± 0.0012 was found for the thread pitch analysis of groups 1 - 2, 1 - 3 and 2 - 3. One sample t-test for trueness of mesio-distal width, thread pitch and ratio showed mean difference of 0.00156 mm for the test value of 3.3 (p = 0.9), -0.00026 mm for 0.8 (p = 0.96) and 0.0124 for 4.125 (p = 0.72), respectively, after the application of a magnification correction factor. Conclusion: The device produced reproducible images in different moments and was suitable for comparative clinical examinations of marginal bone as it was convenient to perform reliable linear measurements.
Cite this paper: A. Messias, J. Tondela, S. Rocha, R. Reis, P. Nicolau and F. Guerra, "Acrylic Customized X-Ray Positioning Stent for Prospective Bone Level Analysis in Long-Term Clinical Implant Studies," Open Journal of Radiology, Vol. 3 No. 3, 2013, pp. 136-142. doi: 10.4236/ojrad.2013.33023.

[1]   L. Laurell, and D. Lundgren, “Marginal Bone Level Changes at Dental Implants after 5 Years in Function: A Meta-Analysis,” Clinical Implant Dentistry and Related Research, Vol. 13, No. 1, 2011, pp. 19-28. doi:10.1111/j.1708-8208.2009.00182.x

[2]   M. P. Hanggi, D. C. Hanggi, J. D. Schoolfield, J. Meyer, D. L. Cochran and J. S. Hermann, “Crestal Bone Changes around Titanium Implants. Part I: A Retrospective Radiographic Evaluation in Humans Comparing Two NonSubmerged Implant Designs with Different Machined Collar Lengths,” Journal of Periodontology, Vol. 76, No. 5, 2005, pp. 791-802. doi:10.1902/jop.2005.76.5.791

[3]   J. S. Hermann, J. D. Schoolfield, P. V. Nummikoski, D. Buser, R. K. Schenk and D. L. Cochran, “Crestal Bone Changes around Titanium Implants: A Methodologic Study Comparing Linear Radiographic with Histometric Measurements,” The International Journal of Oral & Maxillofacial Implants, Vol. 16, No. 4, 2001, pp. 475485.

[4]   F. Isidor, “Clinical Probing and Radiographic Assessment in Relation to the Histologic Bone Level at Oral Implants in Monkeys,” Clinical Oral Implants Research, Vol. 8, No. 4, 1997, pp. 255-264. doi:10.1034/j.1600-0501.1997.080402.x

[5]   M. Wakoh, et al., “Reliability of Linear Distance Measurement for Dental Implant Length with Standardized Periapical Radiographs,” The Bulletin of Tokyo Dental College, Vol. 47, No. 3, 2006, pp. 105-115. doi:10.2209/tdcpublication.47.105

[6]   E. De Smet, R. Jacobs, F. Gijbels and I. Naert, “The Accuracy and Reliability of Radiographic Methods for the Assessment of Marginal Bone Level around Oral Implants,” Dentomaxillofacial Radiology, Vol. 31, No. 3, 2002, pp. 176-181. doi:10.1038/sj.dmfr.4600694

[7]   H. J. Meijer, W. H. Steen and F. Bosman, “A Comparison of Methods to Assess Marginal Bone Height around Endosseous Implants,” Journal of Clinical Periodontology, Vol. 20, No. 4, 1993, pp. 250-253. doi:10.1111/j.1600-051X.1993.tb00353.x

[8]   K. H. Huh, S. S. Lee, I. S. Jeon, W. J. Yi, M. S. Heo and S.C. Choi, “Quantitative Analysis of Errors in Alveolar Crest Level Caused by Discrepant Projection Geometry in Digital Subtraction Radiography: An in Vivo Study,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, Vol. 100, No. 6, 2005, pp. 750-755. doi:10.1016/j.tripleo.2005.03.005

[9]   A. Mol and S. M. Dunn, “The Performance of Projective Standardization for Digital Subtraction Radiography,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, Vol. 96, No. 3, 2003, pp. 373-382. doi:10.1016/S1079-2104(03)00357-3

[10]   P. Eickholz, T. S. Kim, D. K. Benn and H. J. Staehle, “Validity of Radiographic Measurement of Interproximal Bone Loss,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, Vol. 85, No. 1, 1998, pp. 99-106. doi:10.1016/S1079-2104(98)90406-1

[11]   D. K. Benn, “Estimating the Validity of Radiographic Measurements of Marginal Bone Height Changes around Osseointegrated Implants,” Implant Dentistry, Vol. 1, No. 1, 1992, pp. 79-83.

[12]   W. J. Updegrave, “The Paralleling Extension-Cone Technique in Intraoral Dental Radiography,” Oral Surgery, Oral Medicine, Oral Pathology, Vol. 4, No. 10, 1951, pp. 1250-1261. doi:10.1016/0030-4220(51)90084-9

[13]   N. Fernandez-Formoso, B. Rilo, M. J. Mora, I. Martinez-Silva and U. Santana, “A Paralleling Technique Modification to Determine the Bone Crest Level around Dental Implants,” Dentomaxillofacial Radiology, Vol. 40, No. 6, 2011, pp. 385-389. doi:10.1259/dmfr/45365752

[14]   R. L. Navarro, P. V. Oltramari, J. F. Henriques, A. L. Capelozza, E. Santana and J. M. Granjeiro, “Radiographic Techniques for Medical-Dental Research with Minipigs,” The Veterinary Journal, Vol. 174, No. 1, 2007, pp. 165-169. doi:10.1016/j.tvjl.2006.06.004

[15]   R. A. Couture, D. A. Dixon and C. F. Hildebolt, “A Precise Receptor-Positioning Device for Subtraction Radiography, Based on Cross-Arch Stabilization,” Dentomaxillofacial Radiology, Vol. 34, No. 4, 2005, pp. 231-236. doi:10.1259/dmfr/22285074

[16]   D. A. Dixon and C. F. Hildebolt, “An Overview of Radiographic Film Holders,” Dentomaxillofacial Radiology, Vol. 34, No. 2, 2005, pp. 67-73. doi:10.1259/dmfr/99945885

[17]   J. C. Wu, et al., “Use of a Simple Intraoral Instrument to Standardize Film Alignment and Improve Image Reproducibility,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, Vol. 100, No. 1, 2005, pp. 99104. doi:10.1016/j.tripleo.2004.12.011

[18]   C. Morea, et al., “Development of an Opto-Electronic Positioning Device for Serial Direct Digital Images of Oral Structures,” Journal of Periodontal Research, Vol. 35, No. 4, 2000, pp. 225-231. doi:10.1034/j.1600-0765.2000.035004225.x

[19]   E. D. Kuhl and P. V. Nummikoski, “Radiographic Absorptiometry Method in Measurement of Localized Alveolar Bone Density Changes,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, Vol. 89, No. 3, 2000, pp. 375-381. doi:10.1016/S1079-2104(00)70105-3

[20]   T. E. Southard, D. M. Wunderle, K. A. Southard and J. R. Jakobsen, “Geometric and Densitometric Standardization of Intraoral Radiography through Use of a Modified XCP System,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, Vol. 87, No. 2, 1999, pp. 253-257. doi:10.1016/S1079-2104(99)70281-7

[21]   B. Dubrez, S. Jacot-Descombes and G. Cimasoni, “Reliability of a Paralleling Instrument for Dental Radiographs,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, Vol. 80, No. 3, 1995, pp. 358-364. doi:10.1016/S1079-2104(05)80395-6

[22]   B. J. Potter, M. K. Shrout and J. C. Harrell, “Reproducibility of Beam Alignment Using Different Bite-Wing Radiographic Techniques,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology , Vol. 79, No. 4, 1995, pp. 532-535. doi:10.1016/S1079-2104(05)80141-6

[23]   R. Schulze, D. D. Bruellmann, F. Roeder and B. d’Hoedt, “Determination of Projection Geometry from Quantitative Assessment of the Distortion of Spherical References in Single-View Projection Radiography,” Medical Physics, Vol. 31, No. 10, 2004, pp. 2849-2854. doi:10.1118/1.1796951

[24]   R. K. Schulze and B. d’Hoedt, “Mathematical Analysis of Projection Errors in ‘Paralleling Technique’ with Respect to Implant Geometry,” Clinical Oral Implants Research, Vol. 12, No. 4, 2001, pp. 364-371. doi:10.1034/j.1600-0501.2001.012004364.x

[25]   J. M. Bland and D. G. Altman, “A Note on the Use of the Intraclass Correlation Coefficient in the Evaluation of Agreement between Two Methods of Measurement,” Computers in Biology and Medicine, Vol. 20, No. 5, 1990, pp. 337-340. doi:10.1016/0010-4825(90)90013-F

[26]   U. Bragger, L. Pasquali, H. Rylander, D. Carnes and K. S. Kornman, “Computer-Assisted Densitometric Image Analysis in Periodontal Radiography. A Methodological Study,” Journal of Clinical Periodontology, Vol. 15, No. 1, 1988, pp. 27-37. doi:10.1111/j.1600-051X.1988.tb01551.x

[27]   A. Kavadella, A. Karayiannis and K. Nicopoulou-Karayianni, “Detectability of Experimental Peri-Implant Cancellous Bone Lesions Using Conventional and Direct Digital Radiography,” Australian Dental Journal, Vol. 51, No. 2, 2006, pp. 180-186. doi:10.1111/j.1834-7819.2006.tb00424.x

[28]   M. Christgau, K. A. Hiller, G. Schmalz, C. Kolbeck and A. Wenzel, “Quantitative Digital Subtraction Radiography for the Determination of Small Changes in Bone Thickness: An in Vitro Study,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, Vol. 85, No. 4, 1998, pp. 462-472. doi:10.1016/S1079-2104(98)90076-2

[29]   M. Christgau, K. A. Hiller, G. Schmalz, C. Kolbeck and A. Wenzel, “Accuracy of Quantitative Digital Subtraction Radiography for Determining Changes in Calcium Mass in Mandibular Bone: An in Vitro Study,” Journal of Periodontal Research, Vol. 33, No. 3, 1998, pp. 138-149. doi:10.1111/j.1600-0765.1998.tb02304.x

[30]   I. P. Sewerin, “Errors in Radiographic Assessment of Marginal Bone Height around Osseointegrated Implants,” Scandinavian Journal of Dental Research, Vol. 98, No. 5, 1990, pp. 428-433.

[31]   U. E. Ruttimann, R. L. Webber and E. Schmidt, “A Robust Digital Method for Film Contrast Correction in Subtraction Radiography,” Journal of Periodontal Research, Vol. 21, No. 5, 1986, pp. 486-495. doi:10.1111/j.1600-0765.1986.tb01484.x

[32]   T. A. Larheim and S. Eggen, “Measurements of Alveolar Bone Height at Tooth and Implant Abutments on Intraoral Radiographs. A Comparison of Reproducibility of Eggen Technique Utilized with and without a Bite Impression,” Journal of Clinical Periodontology, Vol. 9, No. 3, 1982, pp. 184-192. doi:10.1111/j.1600-051X.1982.tb02058.x

[33]   T. Economopoulos, G. K. Matsopoulos, P. A. Asvestas, K. Grondahl and H. G. Grondahl, “Automatic Correspondence Using the Enhanced Hexagonal Centre-Based Inner Search Algorithm for Point-Based Dental Image Registration,” Dentomaxillofacial Radiology, Vol. 37, No. 4, 2008, pp. 185-204. doi:10.1259/dmfr/26553364

[34]   F. Roeder, D. Brullmann, B. d’Hoedt and R. Schulze, “Ex Vivo Radiographic Tooth Length Measurements with the Reference Sphere Method (RSM),” Clinical Oral Investigations, Vol. 14, No. 6, 2010, pp. 645-651. doi:10.1007/s00784-009-0350-9

[35]   A. Rawlinson, et al., “An in-Vitro and in-Vivo Methodology Study of Alveolar Bone Measurement Using Extra-Oral Radiographic Alignment Apparatus, Image ProPlus Software and a Subtraction Programme,” Journal of Dentistry, Vol. 33, No. 9, 2005, pp. 781-788.

[36]   D. K. Benn, “Limitations of the Digital Image Subtraction Technique in Assessing Alveolar Bone Crest Changes Due to Misalignment Errors During Image Capture,” Dentomaxillofacial Radiology, Vol. 19, No. 3, 1990, pp. 97-104.