The Mathematical Foundations of General Relativity Revisited

Show more

References

[1] J.-F. Pommaret, “Partial Differential Control Theory,” Kluwer, Dordrecht, 2001.
doi:10.1007/978-94-010-0854-9

[2] E. Cartan, Annales Scientifiques de l’école Normale Supérieure, Vol. 21, 1904, pp. 153-206.

[3] E. Cartan, Annales Scientifiques de l’école Normale Supérieure, Vol. 40, 1923, pp. 325-412.

[4] H. Goldschmidt, Journal of Differential Geometry, Vol. 6, 1972, pp. 357-373,

[5] A. Kumpera and D. C. Spencer, “Lie Equations,” Annals of Mathematics Studies 73, Princeton University Press, Princeton, 1972.

[6] J.-F. Pommaret, “Differential Galois Theory,” Gordon and Breach, New York, 1983.

[7] J.-F. Pommaret, “Spencer Operator and Applications: From Continuum Mechanics to Mathematical Physics,” In: Y. Gan, Ed., Continuum Mechanics-Progress in Fundamentals and Engineering Applications, InTech, 2012.
http://www.intechopen.com/books/continuum-mechanics-progress-in-fundamentals-and-engineering-applications/spencer-operator-and-applications-from-continuum-mechanics-to-mathematical-physics

[8] J.-F. Pommaret, “Partial Differential Equations and Group Theory,” Kluwer, 1994.
doi:10.1007/978-94-017-2539-2

[9] E. Vessiot, Annales scientifiques de l’école Normale Supérieure, Vol. 20, 1903, pp. 411-451.

[10] V. Ougarov, “Théorie de la Relativité Restreinte,” MIR, Moscow, 1969.

[11] L. P. Eisenhart, “Riemannian Geometry,” Princeton University Press, Princeton, 1926.

[12] J.-F. Pommaret, “Lie Pseudogroups and Mechanics,” Gordon and Breach, New York, 1988.

[13] A. Lorenz, “Jet Groupoids, Natural Bundles and the Vessiot Equivalence Method,” Acta Applicandae Mathematicae, Vol. 1, 2008, pp. 205-213.
doi:10.1007/s10440-008-9193-7

[14] D. C. Spencer, Bulletin of the American Mathematical Society, Vol. 75, 1965, pp. 1-114.

[15] M. Janet, Journal de Mathématiques Pures et Appliquées, Vol. 8, 1920, pp. 65-151.

[16] H. Weyl, “Space, Time, Matter,” Berlin, 1918.

[17] E. Cosserat and F. Cosserat, “Théorie des Corps Déformables,” Hermann, Paris, 1909.

[18] J.-F. Pommaret, Acta Mechanica, Vol. 149, 2001, pp. 23-39. doi:10.1007/BF01261661

[19] J.-F. Pommaret, Acta Mechanica, Vol. 215, 2010, pp. 43-55. doi:10.1007/s00707-010-0292-y

[20] J. J. Rotman, “An Introduction to Homological Algebra,” Academic Press, Cambridge, 1979.

[21] R. E. Kalman, Y. C. Yo and K. S. Narenda, Journal of Differential Equations, Vol. 1, 1963, pp. 189-213.

[22] M. Kashiwara, Mémoires de la Société Mathématique de France, Vol. 63, 1995, pp. 1-72.

[23] V. P. Palamodov, “Linear Differential Operators with Constant Coefficients,” Grundlehren der Mathematischen Wissenschaften 168, Springer, 1970.
doi:10.1007/978-3-642-46219-1

[24] J.-F. Pommaret, “Algebraic Analysis of Control Systems Defined by Partial Differential Equations,” Advanced Topics in Control Systems Theory, Springer, Lecture Notes in Control and Information Sciences 311, 2005, pp. 155-223.

[25] E. Kunz, “Introduction to Commutative Algebra and Algebraic Geometry,” Birkhauser, 1985.

[26] W. Pauli, “Theory of Relativity,” Pergamon Press, London, 1958.