JBNB  Vol.2 No.1 , January 2011
Heating of Biological Tissues by Gold Nano Particles: Effects of Particle Size and Distribution
Abstract: This paper deals with hyper thermal therapy of tumors in biological tissues using dispersions of gold nano spheres. These spheres are heated with a laser beam in the near infrared range based on surface plasmon resonance phenome-non. The single sphere problem gives a surface temperature rise following a universal form with a characteristic time τ proportional to the sphere surface and inverse diffusivity of the surrounding medium. The temperature front is found to reach a finite range when traveling into the surrounding medium with a certain time delay. The many particles problem is treated as a convolution product of the sphere density distribution function and the particle temperature profile. Different space distribution functions of nano particles are considered. A uniform sphere distribution provides a good coverage of medium heating while a Gaussian distribution predicts an important drop of temperature when approaching the borders of the treated region. Lorentzian distribution was also considered for comparison. An effort is made to highlight the impacts of the obtained results in developing strategies for hyper thermal therapy in a joint effort with the medical team.
Cite this paper: nullB. Fasla, A. Senoudi, A. Boussaid, M. Benmouna and R. Benmouna, "Heating of Biological Tissues by Gold Nano Particles: Effects of Particle Size and Distribution," Journal of Biomaterials and Nanobiotechnology, Vol. 2 No. 1, 2011, pp. 49-54. doi: 10.4236/jbnb.2011.21007.

[1]   J. H. Breasted, “Edwin’s Smith Chirurgical Papyrus,” University of Chicago, 1930.

[2]   L. Goldman, et al., Adv. Biomed. Eng. Med. Phys., Vol. 1, 1968, pp. 317.

[3]   M. Ferrari, Nat. Rev. Cancer, Vol. 5, pp. 161, 2005.

[4]   I. R. Hirsh et al., Proc. Nat. Acad. Sci. USA, Vol. 100, pp. 13549, 2003.

[5]   A.G. Cuenca et al., Am. Cancer Soc., Vol. 107, pp. 459 2006.

[6]   O. V. Salata, J. Nanobiotech., Vol. 2, pp. 1, 2004.

[7]   A. Hadj Sahraoui, et al., J. Appl. Phys., Vol. 82, pp. 12, 1997.

[8]   A. Boudene, S. Khaldi, J. Appl. Polym. Sci. Vol. 89, pp. 481, 2003.

[9]   X. Coqueret et al., Macromol. Theory Simul., Vol. 9, pp. 725, 2000.

[10]   P. Keblinski al., J. Appl. Phys., Vol. 100, pp. 054305, 2006.

[11]   C. M. Pitsillides et al. Biophys. J., Vol. 84, pp. 4023, 2003.

[12]   L. E. Vlerken, M. M. Amiji, Expert Opin. Drug Deliv., Vol. 3, pp. 205, 2006.

[13]   X. Huang et al., J. Adv. Res., Vol. 1, pp. 13, 2010.

[14]   D. Lapotko, Nanomed., Vol. 4, pp. 253, 2009.

[15]   S. Shenogin et al., J. Appl. Phys., Vol. 95, pp. 8136, 2004.

[16]   G. Mie, Ann. Phys., Vol. 25, pp. 377, 1908.

[17]   M. Kerker, “The Scattering of Light and Other Electromag Netic Radiations,” Academic Press, New York, 1969.

[18]   B.T. Draine et al., Astrophys. J., Vol. 405, pp. 685, 1993.

[19]   B.T. Draine, “Light Scattering by Non-Spherical Particles: Theory, Measurements and Applications,” Academic Press, San Diego, 2000.

[20]   U. Kreibig, M. Vollmer, “Optical Properties of Metal Clusters,” Springer Verlag, Berlin, 1995.

[21]   C.F. Bohren, D.R. Huffman, “Absorption and Scattering of Light by Small Particles,” Wiley, New York, 1983.

[22]   A. R. Sennoudi et al. unpublished.

[23]   I.-S. Gradshteyn and I. W. Ryghik, “Tables of Integrals, Series and Products,” Academic Press, New York, 1965.

[24]   H. Goldenberg, C.J. Tranter, Brit. J. Appl. Phys. 296, 1952.

[25]   G. Yin et al. , J. Kor. Phys. Soc., Vol. 49, pp. 2108, 2006.

[26]   G. Brix et al , Magn. Res. Imag., Vol. 20, pp. 65, 2002.

[27]   F. Hakem et al., Ber. Bunsenges. Phys. Chem., Vol. 100, pp. 815, 1996.

[28]   M. Benmouna et al., Phys. Chem. Liq., Vol. 16, pp. 235, 1987.

[29]   J. M. Dobson, “Manual of Small Animal Oncology”, RAS White Edit., Bsava, 1991.