JST  Vol.3 No.3 , September 2013
Conducting Rubber Force Sensor: Transient Characteristics and Radiation Heating Effect
ABSTRACT

Compression force sensors are indispensable to tactile sensors in humanoid robots. We are investigating the application of low-cost electrically conducting rubber sheets to force sensors, of which the biggest problem is its poor reproducibility. We have found that the deposition of aluminum by a vacuum evaporation method shows such an excellent characteristic that the sensor can be used in a wide range under 10.33 N/cm2. In this article, we investigated time response of the sensors and also studied how the radiation heating during the vacuum evaporation process for Al deposition affected their sensing property. We found that the radiation heating induces deterioration from the point of view of standard deviation of the output voltage of the sensors at a transient region. We convince that a low-temperature Al deposition method should be developed to form electrodes on the electrical conducting rubber sensors.


Cite this paper
M. Ohmukai, Y. Kami and K. Ashida, "Conducting Rubber Force Sensor: Transient Characteristics and Radiation Heating Effect," Journal of Sensor Technology, Vol. 3 No. 3, 2013, pp. 36-41. doi: 10.4236/jst.2013.33007.
References
[1]   M. H. Lee and H. R. Nicholls, “Review Article Tactile Sensing for Mechatronics—A State of the Art Survey,” Mechatronics, Vol. 9, No. 1, 1999, pp. 1-31. doi:10.1016/S0957-4158(98)00045-2

[2]   Z. Li, P. Hsu and S. Sastry, “Grasping and Coordinated Manipulation by a Multifingered Robot Hand,” The International Journal of Robotics Research, Vol. 8, No. 4, 1989, pp. 33-50. doi:10.1177/027836498900800402

[3]   A. D. Berger and P. K. Khosla, “Using Tactile Data for Real-Time Feedback,” The International Journal of Robotics Research, Vol. 10, No. 2, 1991, pp. 88-102. doi:10.1177/027836499101000202

[4]   P. A. Schmidt, E. Mael and R. P. Wurtz, “A Sensor for Dynamic Tactile Information with Applications in Human-Robot Interaction & Object Exploration,” Robotics and Autonomous Systems, Vol. 54, No. 12, 2006, pp. 1005-1014. doi:10.1016/j.robot.2006.05.013

[5]   K. Kim, K. R. Lee, W. H. Kim, K. Park, T. Kim, J.-S. Kim and J. J. Pak, “Polymer-Based Flexible Tactile Sensor up to 32 × 32 Arrays Integrated with Interconnection Terminals,” Sensors and Actuators A: Physical, Vol. 156, No. 2, 2009, pp. 284-291. doi:10.1016/j.sna.2009.08.015

[6]   J. Engel, J. Chen and C. Liu, “Development of Polyimide Flexible Tactile Sensor Skin,” Journal of Micromechanics and Microengineering, Vol. 13, No. 3, 2003, pp. 359-366. doi:10.1088/0960-1317/13/3/302

[7]   Y. Zhang, “Sensitivity Enhancement of a Micro-Scale Biomimetic Tactile Sensor with Epidermal Ridges,” Journal of Micromechanics and Microengineering, Vol. 20, No. 8, 2010, Article ID: 085012. doi:10.1088/0960-1317/20/8/085012

[8]   W.-C. Choi, “Polymer Micromachined Flexible Tactile Sensor for Three-Axial Toads Detection,” Transactions on Electrical and Electronic Materials, Vol. 11, No. 3, 2010, pp. 130-133. doi:10.4313/TEEM.2010.11.3.130

[9]   K. Noda, K. Hoshino, K. Matsumoto and I. Shimoyama, “A Shear Stress Sensor for Tactile Sensing with the Piezoresistive Cantilever Standing in Elastic Material,” Sensors and Actuators A: Physical, Vol. 127, No. 2, 2006, pp. 295-301. doi:10.1016/j.sna.2005.09.023

[10]   L. Beccai, S. Rocdella, L. Ascari, P. Valdastri, A. Sieber, M. Carrozza and P. Dario, “Development and Experimental Analysis of a Soft Compliant Tactile Microsensor for Anthropomorphic Artificial Hand,” IEEE/ASME Transactions on Mechatronics, Vol. 13, No. 2, 2008, pp. 158-168. doi:10.1109/TMECH.2008.918483

[11]   H. Lee, J. Chung, S. Chang and E. Yoon, “Normal and Shear Force Measurement Using a Flexible Polymer Tactile Sensor with Embedded Multiple Capacitors,” Journal of Microelectromechanical Systems, Vol. 17, No. 4, 2008, pp. 934-942. doi:10.1109/JMEMS.2008.921727

[12]   S. Miyazaki and A. Ishida, “Capacitive Transducer for Continuous Measurement of Vertical Foot Force,” Medical and Biological Engineering and Computing, Vol. 22, No. 4, 1984, pp. 309-316. doi:10.1007/BF02442098

[13]   Y. Hasegawa, M. Shikida, D. Ogura, Y. Suzuki, and K. Sato, “Fabrication of a Wearable Fabric Tactile Sensor Produced by Artificial Hollow Fiber,” Journal of Micromechanics and Microengineering, Vol. 18, No. 8, 2008, Article ID: 085014. doi:10.1088/0960-1317/18/8/085014

[14]   J.-S. Heo, J.-H. Chung and J.-J. Lee, “Tactile Sensor Arrays Using Fiber Bragg Grating Sensors,” Sensors and Actuators A: Physical, Vol. 126, No. 2, 2006, pp. 312-327. doi:10.1016/j.sna.2005.10.048

[15]   E. Cheung and V. Lumelsky, “A Sensitive Skin System for Motion Control of Robot Arm Manipulators,” Robotics and Autonomous Systems, Vol. 10, No. 1, 1992, pp. 9-32. doi:10.1016/0921-8890(92)90012-N

[16]   E. S. Kolesar, R. R. Reston, D. G. Ford and R. C. Fitch, “Multiplexed Piezoelectric Polymer Tactile Sensor,” Journal of Robotic Systems, Vol. 9, No. 1, 1992, pp. 37-63. doi:10.1002/rob.4620090104

[17]   J. Dargahi, M. Parameswaran and S. Payandeh, “A Micromachined Piezoelectric Tactile Sensor for an Endoscopic Grasper—Theory, Fabrication and Experiments,” Journal of Microelectromechanical Systems, Vol. 9, No. 3, 2000, pp. 329-335. doi:10.1109/84.870059

[18]   J. R. Flanagan and A. M. Wing, “Modulation of Grip Force with Load Force during Point-to-Point Arm Movements,” Experimental Brain Research, Vol. 95, No. 1, 1993, pp. 131-143. doi:10.1007/BF00229662

[19]   P. Dario and D. de Rossi, “Tactile Sensors and Gripping Challenge,” IEEE Spectrum, Vol. 22, No. 8, 1985, pp. 46-52. doi:10.1109/MSPEC.1985.6370785

[20]   N. Wettels, V. Santos, R. Johansson and G. Loeb, “Biomimetic Tactile Sensor Array,” Advanced Robotics, Vol. 22, No. 8, 2008, pp. 829-849. doi:10.1163/156855308X314533

[21]   I. Manunza and A. Bonfiglio, “Pressure Sensing Using a Completely Flexible Organic Transistor,” Biosensors and Bioelectronics, Vol. 22, No. 12, 2007, pp. 2775-2779. doi:10.1016/j.bios.2007.01.021

[22]   T. Sekitani and T. Someya, “Stretchable, Large-Area Organic Electronics,” Advanced Materials, Vol. 22, No. 10, 2010, pp. 2228-2246. doi:10.1002/adma.200904054

[23]   D. Bloor, K. Donnelly, P. J. Hands, P. Laughlin and D. Lussey, “A Metal-Polymer Composite with Unusual Properties,” Journal of Physics D: Applied Physics, Vol. 38, No. 16, 2005, pp. 2851-2860. doi:10.1088/0022-3727/38/16/018

[24]   V. Maheshwari and R. F. Saraf, “High-Resolution Thin-Film Device to Sense Texture by Touch,” Science, Vol. 312, No. 5779, 2006, pp. 1501-1504. doi:10.1126/science.1126216

[25]   S. Ando and H. Shinoda, “Ultrasonic Emission Tactile Sensing,” IEEE Control Systems, Vol. 15, No. 1, 1995, pp. 61-69. doi:10.1109/37.341866

[26]   R. S. Dahiya, M. Valle and L. Lorenzelli, “Spice Model of Lossy Piezoelectric Polymers,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 56, No. 2, 2009, pp. 387-396. doi:10.1109/TUFFC.2009.1048

[27]   G. M. Krishna and K. Rajanna, “Tactile Sensor Based on Piezoelectric Resonance,” IEEE Sensors Journal, Vol. 4, No. 5, 2004, pp. 691-697. doi:10.1109/JSEN.2004.833505

[28]   T. J. Nelson, R. B. V. Dover, S. Jin, S. Hackwood and G. Beni, “Shear-Sensitive Magnetroresistive Robotic Tactile Sensor,” IEEE Transactions on Magnetics, Vol. 22, No. 5, 1986, pp. 394-396. doi:10.1109/TMAG.1986.1064386

[29]   Z. Wen, Y. Wu, Z. Zhang, S. Xu, S. Huang and Y. Li, “Development of an Integrated Vacuum Microelectronic Tactile Sensor Array,” Sensors and Actuators A: Physical, Vol. 103, No. 3, 2003, pp. 301-306. doi:10.1016/S0924-4247(02)00392-8

[30]   D. J. Beebe, A. S. Hsieh, D. D. Denton and R. G. Radwin, “A Silicon Force Sensor for Robotics and Medicine,” Sensors and Actuators A: Physical, Vol. 50, No.1-2, 1995, pp. 55-65. doi:10.1016/0924-4247(96)80085-9

[31]   M. R. Wolffenbuttel and P. P. L. Regtien, “Polysilicon Bridges for the Realization of Tactile Sensors,” Sensors and Actuators A: Physical, Vol. 26, No. 1-3, 1991, pp. 257-264. doi:10.1016/0924-4247(91)87002-K

[32]   S. Sugiyama, K. Kawahata, M. Yoneda and I. Igarashi, “Tactile Image Detection Using a 1k-Element Silicon Pressure Sensor Array,” Sensors and Actuators A: Physical, Vol. 22, No. 1-3, 1990, pp. 397-400.

[33]   L. Liu, X. Zheng and L. Zhijian, “An Array Tactile Sensor with Piezoresistive Single-Crystal Silicon Diaphragm,” Sensors and Actuators A: Physical, Vol. 35, No. 3, 1993, pp. 193-196. doi:10.1016/0924-4247(93)80151-6

[34]   B. J. Kane, M. R. Cutkosky and G. T. A. Kovacs, “A Traction Stress Sensor Array for Use in High-Resolution Robotic Tactile Imaging,” Journal of Microelectromechanical Systems, Vol. 9, No. 4, 2000, pp. 425-434. doi:10.1109/84.896763

[35]   H. Takao, K. Sawada and M. Ishida, “Monolithic Silicon Smart Tactile Image Sensor with Integrated Strain Sensor Array on Pneumatically Swollen Single-Diaphragm Structure,” IEEE Transactions on Electron Devices, Vol. 53, No. 5, 2006, pp. 1250-1259. doi:10.1109/TED.2006.872698

[36]   Z. Chu, P. M. Saoor and S. Middelhoek, “Silicon Three-Axial Tactile Sensor,” Sensors and Actuators A: Physical, Vol. 54, No. 1-3, 1996, pp. 505-510. doi:10.1016/S0924-4247(95)01190-0

[37]   M. Leineweber, G. Pelz, M. Schmidt, H. Kappert and G. Zimmer, “New Tactile Sensor Chip with Silicone Rubber Cover,” Sensors and Actuators A: Physical, Vol. 84, No. 3, 2000, pp. 236-245. doi:10.1016/S0924-4247(00)00310-1

[38]   M. Ohmukai, Y. Kami and R. Matsuura, “Electrode for Force Sensor of Conductive Rubber,” Journal of Sensor Technology, Vol. 2, No. 3, 2012, p. 127.

[39]   R. H. LaMotte and M. A. Srinivasan, “Tactile Discrimination of Shape: Responses of Slowly Adapting Mechanoreceptive Afferents to a Step Stroked across the Monkey Fingerpad,” The Journal of Neuroscience, Vol. 7, No. 6, 1987, pp. 1655-1671.

[40]   R. H. LaMotte and M. A. Srinivasan, “Tactile Discrimination of Shape: Responses of Rapidly Adapting Mechanoreceptive Afferents to a Step Stroked across the Monkey Fingerpad,” The Journal of Neuroscience, Vol. 7, No. 6, 1987, pp. 1672-1681.

 
 
Top