[1] Cheng, Z., Zhang, J., Liu, H., Li, Y., Zhao, Y. and Yang, E. (2010) Central nervous system penetration for small molecule therapeutic agents does not increase in multiple sclerosis-and Alzheimer’s disease-related animal models despite reported blood-brain barrier disruption. Drug Metabolism & Disposition, 38, 1355-1361. doi:10.1124/dmd.110.033324
[2] Chen, Y., Zhu, Q.J., Pan, J., Yang, Y. and Wu, X.P. (2009) A prediction model for blood-brain barrier permeation and analysis on its parameter biologically. Computer Methods and Programs in Biomedicine, 95, 280-287. doi:10.1016/j.cmpb.2009.03.006
[3] Miklossy, J. (2011) Alzheimer’s disease—A neurospirochetosis. Analysis of the evidence following Koch’s and Hill’s criteria. Journal of Neuroinflammation, 8, 90.
[4] Inoue, M., Konno, T., Tainaka, K., Nakata, E., Yoshida, H.O. and Morii, T. (2012) Positional effects of phosphorylation on the stability and morphology of tau-related amyloid fibrils. Biochemistry, 51, 1396-1406.
[5] Daebel, V., Chinnathambi, S., Biernat, J., Schwalbe, M., Habenstein, B., Loquet, A., Akoury, E., Tepper, K., Müller, H., Baldus, M., Griesinger, C., Zweckstetter, M., Mandelkow, E., Vijayan, V. and Lange, A. (2012) β-sheet core of tau paired helical filaments revealed by solid-state NMR. Journal of the American Chemical Society, 134, 13982-13989. doi:10.1021/ja305470p
[6] Jeynes, B. and Provias, J. (2011) An investigation into the role of p-glycoprotein in Alzheimer’s disease lesion pathogenesis. Neuroscience Letters, 487, 389-393. doi:10.1016/j.neulet.2010.10.063
[7] Vogelgesang, S., Jedlitschky, G., Brenn, A. and Walker, L.C. (2011) The role of the ATP-binding cassette transporter p-glycoprotein in the transport of β-amyloid across the blood-brain barrier. Current Pharmaceutical Design, 17, 2778-2786. doi:10.2174/138161211797440168
[8] Bartels, A.L. (2011) Blood-brain barrier p-glycoprotein function in neurodegenerative disease. Current Pharmaceutical Design, 17, 2771-2777. doi:10.2174/138161211797440122
[9] Gottesman, M.M. and Pastan, I. (1993) Biochemistry of multidrug resistance mediated by the multidrug transporter. Annual Review of Biochemistry, 62, 385-427.
[10] Kast, C., Canfield, V., Levenson, R. and Gros, P. (1996) Transmembrane organization of mouse p-glycoprotein determined by epitope insertion and immunofluorescence. The Journal of Biological Chemistry, 271, 9240-9248.
[11] Bendayan, R., Lee, G. and Bendayan, M. (2002) Functional expression and localization of p-glycoprotein at the blood brain barrier. Microscopy Research and Technique, 57, 365-380.
[12] Abuznait, A.H., Cain. C., Ingram, D., Burk, D. and Kaddoumi, A. (2011) Up-regulation of p-glycoprotein reduces intracellular accumulation of beta amyloid: Investigation of p-glycoprotein as a novel therapeutic target for Alzheimer’s disease. Journal of Pharmacy and Pharmacology, 63, 1111-1118. doi:10.1111/j.2042-7158.2011.01309.x
[13] Kothandan, G., Gadhe, C.G., Madhavan, T., Choi, C.H. and Cho, S.J. (2011) Docking and 3D-QSAR (quantitative structure activity relationship) studies of flavones, the potent inhibitors of p-glycoprotein targeting the nucleotide binding domain. European Journal of Medicinal Chemistry, 46, 4078-4088. doi:10.1016/j.ejmech.2011.06.008
[14] Hartz, A.M., Miller, D.S. and Bauer, B. (2010) Restoring blood-brain barrier p-glycoprotein reduces brain amyloid-beta in a mouse model of Alzheimer’s disease. Molecular Pharmacology, 77, 715-723. doi:10.1124/mol.109.061754
[15] Jabeen, I., Pleban, K., Rinner, U., Chiba, P. and Ecker, G.F. (2012) Structure-activity relationships, ligand efficiency, and lipophilic efficiency profiles of benzophenone-type inhibitors of the multidrug transporter p-glycoprotein. Journal of Medicinal Chemistry, 55, 3261-3273.
[16] Stouch, T.R. and Gudmundsson, O. (2002) Progress in understanding the structure-activity relationships of pglycoprotein. Advanced Drug Delivery Reviews, 54, 315-328. doi:10.1016/S0169-409X(02)00006-6
[17] Sharom, F.J. (1997) The p-glycoprotein efflux pump: How does it transport drugs? The Journal of Membrane Biology, 160, 161-175. doi:10.1007/s002329900305
[18] Li, Y., Wang, Y.H., Yang, L., Zhang, S.W., Liu, C.H. and Yang, S.L. (2005) Comparison of steroid substrates and inhibitors of p-glycoprotein by 3D-QSAR analysis. Journal of Molecular Structure, 733, 111-118.
[19] Wang, R.B., Kuo, C.L., Lien, L.L. and Lien, E.J. (2003) Structure-activity relationship: Analyses of p-glycoprotein substrates and inhibitors. Journal of Clinical Pharmacy and Therapeutics, 28, 203-228.
[20] Wang, Y.H., Li, Y., Yang, S.L. and Yang, L. (2005) An in silico approach for screening flavonoids as p-glycoprotein inhibitors based on a Bayesian-regularized neural network. Journal of Computer-Aided Molecular Design, 19, 137-147. doi:10.1007/s10822-005-3321-5
[21] Chen, C. and Yang, J. (2006) MI-QSAR models for prediction of corneal permeability of organic compounds. Acta Pharmacologica Sinica, 27, 193-204. doi:10.1111/j.1745-7254.2006.00241.x
[22] Kubinyi, H. (1995) Strategies and recent technologies in drug discovery. Pharmazie, 50, 647-662.
[23] Wiese, M. and Pajeva, I.K. (2001) Structure-activity relationships of multidrug resistance reversers. Current Medicinal Chemistry, 8, 685-713.
[24] Taub, M.E., Podila, L., Ely, D. and Almeida, I. (2005) Functional assessment of multiple p-glycoprotein (p-gp) probe substrates: Influence of cell line and modulator concentration on p-gp activity. Drug Metabolism & Disposition, 33, 1679-1687. doi:10.1124/dmd.105.005421
[25] Alka, K. (2003) C-QSAR: A database of 18000 QSARs and associated biological and physical data. Journal of Computer-Aided Molecular Design, 17, 187-196.
[26] Kuo, C.L., Assefa, H., Kamath, S., Brzozowski, Z., Slawinski, J., Saczewski, F., Buolamwini, J.K. and Neamati, N. (2004) Application of CoMFA and CoMSIA 3D-QSAR and docking studies in optimization of mercaptobenzenesulfonamides as HIV-1 integrase inhibitors. Journal of Medicinal Chemistry, 47, 385-399. doi:10.1021/jm030378i
[27] Cramer, R.D., Patterson, D.E. and Bunce, J.D. (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. Journal of the American Chemical Society, 110, 5959-5967.
[28] Chen, L.J., Lian, G.P. and Han, L.J. (2007) Prediction of human skin permeability using artificial neural network (ANN) modeling. Acta Pharmacologica Sinica, 28, 591-600.
[29] Dhainaut, A., Regnier, G., Tizot, A., Pierre A., Leonce, S., Guilbaud, N., Kraus-Berthier, L. and Atassi, G. (1996) New purines and purine analogs as modulators of multidrug resistance. Journal of Medicinal Chemistry, 39, 4099-4108.
[30] Ford, J.M., Bruggemann, E.P., Pastan, I., Gottesman, M.M. and Hait, W.N. (1990) Cellular and biochemical characterization of thioxanthenes for revesal of multidrug resistance in human and murine cell lines. Cancer Research, 50, 1748-1756.
[31] Schmid, D., Ecker, G., Kopp, S., Hitzler, M. and Chiba, P. (1999) Structure-activity relationship studies of propafenone analogs cased on p-glycoprotein ATPase activity measurements. Biochemical Pharmacology, 58, 1447-1456. doi:10.1016/S0006-2952(99)00229-4
[32] Karelson, M. (2000) Molecular descriptors in QSAR/ QSPR. John Wiley & Sons, New York.
[33] Karelson, M., Lobanov, V.S. and Katritzky, A.R. (1996) Quantum-chemical descriptors in QSAR/QSPR studies. Chemical Reviews, 96, 1027-1044.
[34] Ponce, Y.M., Garit, J.A., Torrens, F., Zaldivar, V.R. and Castro, E.A. (2004) Atom, atom-type, and total linear indices of the “molecular pseudograph’s atom adjacency matrix”: Application to QSPR/QSAR studies of organic compounds. Molecules, 9, 1100-1123. doi:10.3390/91201100
[35] Iyer, M., Mishra, R., Han, Y. and Hopfinger, A.J. (2002) Predicting blood-brain barrier partitioning of organic molecules using membrane-interaction QSAR analysis. Pharmaceutical Research, 19, 1611-1621. doi:10.1023/A:1020792909928
[36] Abraham, M.H., Chadha, H.S. and Mitchell, R.C. (1995) Hydrogen bonding. 36. Determination of blood-brain barrier distribution using octanol-water partition coefficients. Drug Design and Discovery, 13, 123-131.
[37] Abraham, M.H., Takacs-Novak, K. and Mitchell, R.C. (1997) On the partition of ampholytes: Application to blood-brain distribution. Journal of Pharmaceutical Sciences, 86, 310-315. doi:10.1021/js960328j
[38] Bassolino-Klimas, D., Alper, H.E. and Stouch, T.R. (1993) Solute diffusion in lipid bilayer membranes: An atomic level study by molecular dynamics simulation. Biochemistry, 32, 12624-12637. doi:10.1021/bi00210a010
[39] Ma, X.L., Chen, C. and Yang, J. (2005) Predictive model of blood-brain barrier penetration of organic compounds. Acta Pharmacologica Sinica, 26, 500-512. doi:10.1111/j.1745-7254.2005.00068.x
[40] Ohtsuki, S., Ito, S. and Terasaki, T. (2010) Is p-glycoprotein involved in amyloid-β elimination across the blood-brain barrier in Alzheimer’s disease? Clinical Pharmacology & Therapeutics, 88, 443-445.
[41] Aller, S.G., Yu, J., Ward, A., Weng, Y., Chittaboina, S., Zhuo, R., Harrell, P.M., Trinh, Y.T., Zhang, Q., Urbatsch, I.L. and Chang, G. (2009) Structure of p-glycoprotein reveals a molecular basis for poly-specific drug binding. Science, 323, 1718-1722. doi:10.1126/science.1168750
[42] Ambudkar, S.V., Lelong, I.H., Zhang, J., Cardarelli, C.O., Gottesman, M.M. and Pastan, I. (1992) Partial purification and reconstitution of the human multidrug-resistance pump: Characterization of the drug-stimulatable ATP hydrolysis. Proceedings of the National Academy of Sciences of the United States of America, 89, 8472-8476.
[43] Shapiro, A.B. and Ling, V. (1994) ATPase activity of purified and reconstituted p-glycoprotein from Chinese hamster ovary cells. The Journal of Biological Chemistry, 269, 3745-3754.
[44] Doige, C.A., Yu, X. and Sharom, F.J. (1993) The effects of lipids and detergents on ATPase-active p-glycoprotein. Biochimica et Biophysica Acta, 1146, 65-72.
[45] Litman, T., Zeuthen, T., Skovsgaard, T. and Stein, W.D. (1997) Structure-activity relationships of p-glycoprotein interacting drugs: Kinetic characterization of their effects on ATPase activity. Biochimica et Biophysica Acta, 1361, 159-168.
[46] Waterhouse, R.N. (2003) Determination of lipophilicity and its use as a predictor of blood-brain barrier penetration of molecular imaging agents. Molecular Imaging & Biology, 5, 376-389. doi:10.1016/j.mibio.2003.09.014
[47] Palmeira, A., Sousa, E., Fernandes, M.X., Pinto, M.M. and Vasconcelos, M.H. (2012) Multidrug resistance reversal effects of aminated thioxanthones and interaction with cytochrome P450 3A4. Journal of Pharmacy and Pharmaceutical sciences, 15, 31-45.
[48] Higgins, C.F. and Gottesman, M.M. (1992) Is the multidrug transporter a flippase? Trends in Biochemical Sciences, 17, 18-21.
[49] Nazer, B., Hong, S. and Selkoe, D.J. (2008) LRP promotes endocytosis and degradation, but not transcytosis, of the amyloid-beta peptide in a blood-brain barrier in vitro model. Neurobiology of Disease, 30, 94-102. doi:10.1016/j.nbd.2007.12.005