AM  Vol.4 No.9 , September 2013
Modular Spaces Topology
Abstract: In this paper, we present and discuss the topology of modular spaces using the filter base and we then characterize closed subsets as well as its regularity.
Cite this paper: A. Hajji, "Modular Spaces Topology," Applied Mathematics, Vol. 4 No. 9, 2013, pp. 1296-1300. doi: 10.4236/am.2013.49175.

[1]   J. Musielak, “Orlicz Spaces and Modular Spaces,” Lecture Notes in Mathematics, Vol. 1034, 1983.

[2]   A. Ait Taleb and E. Hanebaly, “A Fixed Point Theorem and Its Application to Integral Equations in Modular Function Spaces,” Proceedings of the American Mathematical Society, Vol. 128, 2000, pp. 419-426. doi:10.1090/S0002-9939-99-05546-X

[3]   A. Razani and R. Moradi, “Common Fixed Point Theorems of Integral Type in Modular Spaces,” Bulletin of the Iranian Mathematical Society, Vol. 35, No. 2, 2009, pp. 11-24.

[4]   A. Razani, E. Nabizadeh, M. B. Mohammadi and S. H. Pour, “Fixed Point of Nonlinear and Asymptotic Contractions in the Modular Space,” Abstract and Applied Analysis, Vol. 2007, 2007, Article ID: 40575.

[5]   A. P. Farajzadeh, M. B. Mohammadi and M. A. Noor, “Fixed Point Theorems in Modular Spaces,” Mathematical Communications, Vol. 16, 2011, pp. 13-20.

[6]   M. A. Khamsi, “Nonlinear Semigroups in Modular Function Spaces,” Thèse d'état, Département de Mathématiques, Rabat, 1994.

[7]   M. A. Khamsi, W. Kozlowski and S. M.-Reich, “Fixed Point Theory in Modular Function Spaces,” Nonlinear Analysis, Theory, Methods and Applications, Vol. 14, No. 11, 1990, pp. 935-953.

[8]   F. Lael and K. Nourouzi, “On the Fixed Points of Correspondences in Modular Spaces,” ISRN Geometry, Vol. 2011, 2011, Article ID: 530254. doi:10.5402/2011/530254

[9]   M. A. Khamsi, “Quasicontraction Mappings in Modular Spaces without Δ2-Condition,” Fixed Point Theory and Applications, Vol. 2008, 2008, Article ID: 916187.

[10]   A. Hajji, “Forme Equivalente à la Condition Δ2 et Certains Résultats de Séparations dans les Espaces Modulaires,” 2005.