IJAA  Vol.3 No.3 , September 2013
Influence of Supernova SN Ia Rate and the Early Star Formation Rate on the Galactic Chemical Evolution
Abstract: Based on the recently developed numerical approach to understand the formation and the chemical evolution of the milky-way galaxy in the solar neighborhood we study the influence of the supernova type SN Ia rates on the galactic chemical evolution. Supernova SN Ia plays an important role in producing the iron inventory of the galaxy. We also study the dependence of the chemical evolution on the star formation rate prevailing during the initial one billion years of the evolution of the galaxy. This era marks the formation of the galactic halo and the thick disk. A comparison of the elemental abundance distributions of the dwarf stars in the solar neighborhood is made among the various models simulated in the present work. In order to explain the majority of the observed elemental evolutionary trends, specifically those related with the galactic evolution of iron and oxygen, it would be essential to incorporate a major component of prompt SN Ia to the galactic evolution. The prompt SN Ia would produce significant fraction of SN Ia within the initial ~100 million years from the time of star formation. The essential requirement of prompt SN Ia would result in a significant enhancement of SN Ia rates during the earliest epoch of the galaxy. The elemental evolutionary trends also favor an enhancement in the star formation rate during the initial one billion years of the galaxy at least by a factor of three compared to the trend prevailing during the latter evolutionary time of the galaxy.
Cite this paper: S. Sahijpal, "Influence of Supernova SN Ia Rate and the Early Star Formation Rate on the Galactic Chemical Evolution," International Journal of Astronomy and Astrophysics, Vol. 3 No. 3, 2013, pp. 344-352. doi: 10.4236/ijaa.2013.33038.

[1]   B. E. J. Pagel, “Nucleosynthesis and the Chemical Evolution of Galaxies,” Cambridge University Press, Cambridge, 1997.

[2]   F. Matteucci, “The Chemical Evolution of the Galaxy,” Kluwer Academic Publishers, Dordrecht, 2003. doi:10.1007/978-94-010-0967-6

[3]   F. X. Timmes, S. E. Woosley and T. A. Weaver, “Galactic Chemical Evolution: Hydrogen through Zinc,” The Astrophysical Journal Supplement, Vol. 98, No. 2, 1995, pp. 617-658. doi:10.1086/192172

[4]   C. Chiappini, F. Matteucci and R. Gratton, “The Chemical Evolution of the Galaxy: The Two-Infall Model,” The Astrophysical Journal, Vol. 477, No. 2, 1997, pp. 765-780. doi:10.1086/303726

[5]   A. Alibés, J. Labay and R. Canal, “Galactic Chemical Abundance Evolution in the Solar Neighborhood up to the Iron Peak,” Astronomy and Astrophysics, Vol. 370, No. 3, 2001, pp. 1103-1121. doi:10.1051/0004-6361:20010296

[6]   F. Matteucci, E. Spitoni, S. Recchi and R. Valiante, “The Effect of Different Type Ia Supernova Progenitors on Galactic Chemical Evolution,” Astronomy and Astrophysics, Vol. 501, No. 2, 2009, pp. 531-538. doi:10.1051/0004-6361/200911869

[7]   C. Kobayashi and K. Nomoto, “The Role of Type Ia Supernovae in Chemical Evolution. I. Lifetime of Type Ia Supernovae and Metallicity Effect,” The Astrophysical Journal, Vol. 707, No. 2, 2009, pp. 1466-1484. doi:10.1088/0004-637X/707/2/1466

[8]   C. Kobayashi and N. Nakasato, “Chemodynamical Simulations of the Milky Way Galaxy,” The Astrophysical Journal, Vol. 729, No. 1, 2011, pp. 16-32. doi:10.1088/0004-637X/729/1/16

[9]   S. Sahijpal and G. Gupta, “Numerical Simulation of the Galactic Chemical Evolution: The Revised Solar Abundance,” Meteoritics and Planetary Science Journal, Vol. 48, No. 6, 2013, pp. 1007-1033. doi:10.1111/maps.12123

[10]   M. Asplund, N. Grevesse, A. J. Sauval and P. Scott, “The Chemical Composition of the Sun,” Annual Review of Astronomy and Astrophysics, Vol. 47, No. 1, 2009, pp. 481-522. doi:10.1146/ annurev.astro.46.060407.145222

[11]   E. Anders and N. Grevesse, “Abundances of the Elements —Meteoritic and Solar,” Geochimica et Cosmochimica Acta, Vol. 53, No. 1, 1989, pp. 197-214. doi:10.1016/0016-7037(89)90286-X

[12]   B. Edvardsson, J. Andersen, B. Gustafsson, D. L. Lambert, P. E. Nissen and J. Tomkin, “The Chemical Evolution of the Galactic Disk—Part One—Analysis and Results,” The Astrophysical Journal, Vol. 275, No. 1, 1993, pp. 101-152.

[13]   H. Meusinger, B. Stecklum and H. G. Reimann, “The AgeMetallicity-Velocity Dispersion Relation in the Solar Neighborhood and a Simple Evolution Model,” Astronomy and Astrophysics, Vol. 245, No. 1, 1991, pp. 57-74.

[14]   H. J. Rocha-Pinto, W. J. Maciel, J. Scalo and C. Flynn, “Chemical Enrichment and Star Formation in the Milky Way Disk. I. Sample Description and Chromospheric AgeMetallicity Relation,” Astronomy and Astrophysics, Vol. 358, No. 3, 2000, pp. 850-868.

[15]   S. Sahijpal, “Galactic Chemical Evolution: The Star Formation Rate in the Early Galaxy,” 39th COSPAR Scientific Assembly, Mysore, 14-22 July 2012, p.1651.

[16]   M. A. Dopita and S. D. Ryder, “On the Law of Star Formation in Disk Galaxies,” The Astrophysical Journal, Vol. 430, No. 1, 1994, pp. 163-178. doi:10.1086/174390

[17]   A. I. Karakas and J. C. Lattanzio, “Stellar Models and Yields of Asymptotic Giant Branch Stars,” Publications of the Astronomical Society of Australia, Vol. 24, No. 3, 2007, pp. 103-117. doi:10.1071/AS07021

[18]   S. E. Woosley and T. A. Weaver, “The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis,” The Astrophysical Journal Supplement, Vol. 101, 1995, pp. 181-235. doi:10.1086/192237

[19]   K. Iwamoto, F. Brachwitz, K. Nomoto, N. Kishimoto, H. Umeda, W. R. Hix and F. K. Thielemann, “Nucleosynthesis in Chandrasekhar Mass Models for Type Ia Supernovae and Constraints on Progenitor Systems and Burning-Front Propagation,” The Astrophysical Journal Supplement, Vol. 125, No. 2, 1999, pp. 439-462. doi:10.1086/313278

[20]   G. A. Tammann, W. Loefler and A. Schroder, “The Galactic Supernova Rate,” The Astrophysical Journal Supplement, Vol. 92, No. 2, 1994, pp. 487-493. doi:10.1086/192002