IJAA  Vol.3 No.3 , September 2013
Analysis of the Effect of Space Radiations on the Nematode, Caenorhabditis elegans , through the Simulated Space Radiation
Abstract: In this study, we simulated space flight of the nematode, Caenorhabditis elegans, on the ground and examined how it is affected by space radiation and G-forces. We simulated G-forces during launch in a gravity acceleration laboratory device in order to identify and isolate the effects of the G-forces. Following this, we irradiated C. elegans with accelerated protons (MC-50 Cyclotron) and gamma rays (iR 222 machine) at the same physical dose. We calculated the expected radiation dose according to Reitz [1] and simulation programs (NASA AP8MIN [2], NASA AE8MAX [2], and CREAM86 [3]) for 1 month (dose rate: 6 × 10-3 Gy; 2.8 × 10-2 Gy), 6 months (dose rate: 36 × 10-3 Gy; 16.8 × 10-2 Gy), and 2 years (dose rate: 144 × 10-3 Gy; 67.2 × 10-2 Gy) of space flight. There have been several trials that aimed to take C. elegans into orbit on US space shuttle missions including a mission on the shuttle Columbia. In this study, we simulated longer duration space flights and performed a whole-genome microarray analysis to observe phenotype variations whereas most such experiments were carried out during short duration space flights and focused on mutations and genotypic variations. We expect that the results of this study will be useful to predict the effects of long-term exposure of space radiation on living organisms.
Cite this paper: S. Yi, S. Kim and J. Song, "Analysis of the Effect of Space Radiations on the Nematode, Caenorhabditis elegans , through the Simulated Space Radiation," International Journal of Astronomy and Astrophysics, Vol. 3 No. 3, 2013, pp. 291-302. doi: 10.4236/ijaa.2013.33035.

[1]   G. Reitz, R. Beaujean, E. Benton, S. Burmeister, Ts. Dachev, S. Deme, M. Luszik-Bhadra and P. Olko, “Space Radiation Measurements On-Board ISS—The DOSMAP Experiment,” Radiation Protection Dosimetry, Vol. 116, No. 1-4, 2005, pp. 374-379. doi:10.1093/rpd/nci262

[2]   NASA Space Monitoring Data Center,

[3]   Vanderbilt University School of Engineering,

[4]   T. Sakashita, T. Takanami, S. Yanase, N. Hamada, M. Suzuki, T. Kimura, Y. Kobayashi, N. Ishii and A. Higashitani, “Radiation Biology of Caenorhabditis elegans: Germ Cell Response, Aging and Behavior,” Journal of Radiation Research, Vol. 51, No. 2, 2010, pp. 107-121. doi:10.1269/jrr.09100

[5]   Y. Zhao, R. Johnsen, D. Baillie and A. Rose, “Worms in Space? A Model Biological Dosimeterm,” Gravitational and Space Biology, Vol. 18, No. 2, 2005, pp. 11-16.

[6]   G. A. Nelson, W. W. Schubert, G. A. Kazarians, G. F. Richards, E. V. Benton, E. R. Benton and R. Henke, “Development and Chromosome Mechanics in Nematodes: Results from IML-1,” Advances in Space Research, Vol. 14, No. 8, 1994, pp. 209-214. doi:10.1016/0273-1177(94)90405-7

[7]   G. A. Nelson, W. W. Schubert, G. A. Kazarians, G. F. Richards, E. V. Benton, E. R. Benton and R. Henke, “Radiation Effects in Nematodes: Results from IML-1 Experiments,” Advances in Space Research, Vol. 14, No. 10, 1994, pp. 87-91. doi:10.1016/0273-1177(94)90455-3

[8]   N. J. Szewczyk, R. Mancinelli, W. Mclamb, D. Reed, B. S. Blumberg and C. A. Conley, “Caenorhabditis Elegans Survives Atmospheric Breakup of STS-107, Space Shuttle Columbia. Astrobiology,” Astrobiology, Vol. 5, No. 6, 2005, pp. 690-705. doi:10.1089/ast.2005.5.690

[9]   A. Higashitani, A. Higashibata, Y. Sasagawa, T. Sugimoto, Y. Miyazawa, N. J. Szewcyk, M. Viso, G. Gasset, B. Eche, K. Fukui, T. Shimazu, N. Fujimoto, K. Kuriyama and N. Ishioka, “Checkpoint and Physiological Apoptosis in Germ Cells Proceeds Normally in SpaceFlown Caenorhabditis elegans,” Apoptosis, Vol. 10, No. 5, 2005, pp. 949-954. doi:10.1007/s10495-005-1323-3

[10]   Y. Zhao, K. Lai, I. Cheung, J. Youds, M. Tarailo, S. Tarailo and A. Rose, “A Mutational Analysis of Caenorhabditis elegans in Space. Mutation Research—Fundamental and Molecular Mechanisms of Mutagenesis,” Mutation Research, Vol. 601, No. 1-2, 2006, pp. 19-29. doi:10.1016/j.mrfmmm. 2006.05.001

[11]   N. J. Szewczyk, I. A. Udranszky, E. Kozak, J. Sunga, S. K. Kim, L. A. Jacobson and C. A. Conley, “Delayed Development and Lifespan Extension as Features of Metabolic Lifestyle Alteration in C. elegans under Dietary Restriction,” The Journal of Experimental Biology, Vol. 209, 2006, pp. 4129-4139. doi:10.1242/jeb.02492

[12]   N. J. Szewczyk, J. Tillman, C. A. Conley, L. Grangere, L. Segalate, A. Higashitani, S. Honda, Y. Honda, H. Kagawa, R. Adachi, A. Higashibata, N. Fujimoto, K. Kuriyama, N. Ishioka, K. Fukui, D. Baillie, A. Rose, G. Gasset, B. Eche, D. Chaput and M. Viso, “Description of International Caenorhabditis elegans Experiment First Flight (ICE-First),” Advances in Space Research, Vol. 42, No. 6, 2008, pp. 1072-1079. doi:10.1016/j.asr.2008.03.017

[13]   E. A. Oczypok, T. Etheridge, J. Freeman, L. Stodieck, R. Johnsen, D. Baillie and N. J. Szewczyk, “Remote AutoMated Multi-Generational Growth and Observation of an Animal in Low Earth Orbit,” Journal of the Royal Society Interface, Vol. 9, No. 68, 2012, pp. 596-599. doi:10.1098/rsif.2011.0716





[18]   D. L. Miller, M. W. Budde and M. B. Roth, “HIF-1 and SKN-1 Coordinate the Transcriptional Response to Hydrogen Sulfide in Caenorhabditis elegans,” Aging Cell, Vol. 8, No. 5, 2009, pp. 524-541. doi:10.1371/journal.pone.0025476

[19]   Y. Sasagawa, K. Yamanaka and T. Ogura, “Caenorhabditis elegans UBX Cofactors for CDC-48/p97 Control Spermatogenesis,” Genes Cells, Vol. 12, No. 9, 2007, pp. 1063-1073.

[20]   N. J. Krogan, M. H. Y. Lam, J. Fillingham, M. C. Keogh, M. Gebbia, J. Li, N. Datta, G. Cagney, S. Buratowski, A. Emili and J. F. Greenblatt, “Proteasome Involvement in the Repair of DNA Double-Strand Breaks,” Molecular Cell, Vol. 16, No. 6, 2004, pp. 1027-1034. doi:10.1016/j.molcel. 2004.11.033

[21]   S. Bailey, S. E. Sedelnikova, G. M. Blackburn, H. M. Abdelghany, P. J. Baker, A. G. McLennan and J. B. Rafferty, “The Crystal Structure of Diadenosine Tetraphosphate Hydrolase from Caenorhabditis elegans in Free and Binary Complex Forms,” Structure, Vol. 10, No. 4, 2002, pp. 589-600. doi:10.1016/S0969-2126(02)00746-3

[22]   H. Yu, H. Zhao, L. E. Wang, Y. Han, W. V. Chen, C. I. Amos, T. Rafnar, P. Sulem, K. Stefansson, M. T. Landi, N. Caporaso, D. Albanes, M. Thun, J. D. McKay, P. Brennan, Y. Wang, R. S. Houlston, M. R. Spitz and Q. Wei, “DNA Repair Genotype and Lung Cancer Risk in the Beta-Carotene and Retinol Efficacy Trial,” DNA Repair (Amst), Vol. 7, 2011, pp. 176-187.

[23]   B. J. Park, D. G. Lee, J. R. Yu, S. Jung, K. Choi, J. Lee, J. Lee, Y. S. Kim, J. I. Lee, J. Y. Kwon, J. Lee, A. Singson, W. K. Song, S. H. Eom, C. S. Do, H. Kim, J. Bandyopadhyay and J. Ahnn, “Calreticulin, a Calcium-Binding Molecular Chaperone, Is Required for Stress Response and Fertility in Caenorhabditis elegans,” Molecular and Cellular Biology, Vol. 12, No. 9, 2001, pp. 2835-2845. doi:10.1091/mbc.12.9.2835

[24]   S. J. Russell, S. H. Reed, W. Huang, E. C. Friedberg and S. A. Johnston, “Proteasome Involvement in the Repair of DNA Double-Strand Breaks,” Molecular Cell, Vol. 3, No. 6, 1999, pp. 687-695. doi:10.1016/S1097-2765(01)80001-0

[25]   J. Y. Mun, T. H. Lee, J. H. Kim, B. H. Yoo, Y. Y. Bahk, H. S. Koo and S. S. Han, “Caenorhabditis elegans Mitofilin Homologs Control the Morphology of Mitochondrial Cristae and Influence Reproduction and Physiology,” Journal of Cellular Physiology, Vol. 224, No. 3, 2010, pp. 748-756. doi:10.1002/ jcp.22177

[26]   G. A. Nelson, T. A. Jones, A. Chesnut and A. L. Smith, “Radiation-Induced Gene Expression in the Nematode Caenorhabditis elegans,” Journal of Radiation Research, Vol. 43, 2002, pp. 199-203.

[27]   A. Higashibata, N. J. Szewczyk, C. A. Conley, M. Imamizo-Sato, A. Higashitani and N. Ishioka, “Decreased Expression of Myogenic Transcription Factors and Myosin Heavy Chains in Caenorhabditis elegans Muscles Developed during Spaceflight,” The Journal of Experimental Biology, Vol. 209, No. 16, 2006, pp. 3209-3218. doi:10.1242/jeb.02365