IJAA  Vol.3 No.3 , September 2013
Window Effect in the Power Spectrum Analysis of a Galaxy Redshift Survey
ABSTRACT

We investigate the effect of the window function on the multipole power spectrum in two different ways. First, we consider the convolved power spectrum including the window effect, which is obtained by following the familiar (FKP) method developed by Feldman, Kaiser and Peacock. We show how the convolved multipole power spectrum is related to the original power spectrum, using the multipole moments of the window function. Second, we investigate the deconvolved power spectrum, which is obtained by using the Fourier deconvolution theorem. In the second approach, we measure the multipole power spectrum deconvolved from the window effect. We demonstrate how to deal with the window effect in these two approaches, applying them to the Sloan Digital Sky Survey (SDSS) luminous red galaxy (LRG) sample.


Cite this paper
T. Sato, G. Hütsi, G. Nakamura and K. Yamamoto, "Window Effect in the Power Spectrum Analysis of a Galaxy Redshift Survey," International Journal of Astronomy and Astrophysics, Vol. 3 No. 3, 2013, pp. 243-256. doi: 10.4236/ijaa.2013.33029.
References
[1]   S. Perlmutter, et al., “Measurements of Ω and Λ from 42 High-Redshift Supernovae,” The Astrophysical Journal, Vol. 517, No. 2, 1999, p. 565. doi:10.1086/307221

[2]   A. G. Riess, et al., “Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” The Astrophysical Journal, Vol. 116, No. 3, 1998, p. 1009. doi:10.1086/ 300499

[3]   P. J. E. Peebles and B. Ratra, “The Cosmological Constant and Dark Energy,” Reviews of Modern Physics, Vol. 75, No. 2, 2003, pp. 559-606. doi:10.1103/RevModPhys.75.559

[4]   A. Albrecht, et al., “Report of the Dark Energy Task Force,” 2006. arXiv:astro-ph/0609591

[5]   J. A. Peacock, et al., “ESA-ESO Working Group on Fundamental Cosmology,” 2006. arXiv astro-ph/0610906

[6]   N. Kaiser, “Clustering in Real Space and in Redshift Space,” Monthly Notices of the Royal Astronomical Society, Vol. 227, 1987, pp. 1-21.

[7]   E. V. Linder, “Redshift Distortions as a Probe of Gravity,” Astroparticle Physics, Vol. 29, No. 5, 2008, pp. 336-339. doi:10.1016/j.astropartphys.2008.03.002

[8]   L. Guzzo, et al., “A Test of the Nature of Cosmic Acceleration Using Galaxy Redshift Distortions,” Nature, Vol. 451, 2008, pp. 541-544. doi:10.1038/nature06555

[9]   R. Reyes, et al., “Confirmation of General Relativity on Large Scales from Weak Lensing and Galaxy Velocities,” Nature, Vol. 464, 2010. pp. 256-258. doi:10.1038/nature08857

[10]   T. Okumura, et al., “Large-Scale Anisotropic Correlation Function of SDSS Luminous Red Galaxies,” The Astrophysical Journal, Vol. 676, No. 2, 2008, p. 889. doi:10.1086/528951

[11]   A. Cabre and E. Gaztanaga, “Clustering of Luminous Red Galaxies—I. Large-Scale Redshift-Space Distortions,” Monthly Notices of the Royal Astronomical Society, Vol. 393, No. 4, 2009, pp. 1183-1208. doi:10.1111/j.1365-2966.2008.14281.x

[12]   S. Cole, K. Fisher and D. H. Weinberg, “Fourier Analysis of Redshift Space Distortions and the Determination of Omega,” Monthly Notices of the Royal Astronomical Society, Vol. 267, 1994, pp. 785-799.

[13]   A. J. S. Hamilton, “The Evolving Universe,” Kluwer Academic Publishers, Dordrecht, 1998. doi:10.1007/978-94-011-4960-0_17

[14]   P. J. Outram, et al., “The 2dF QSO Redshift Survey—VI. Measuring Λ and β from Redshift-Space Distortions in the Power Spectrum,” Monthly Notices of the Royal Astronomical Society, Vol. 328, No. 1, 2001, pp. 174-184. doi:10.1046/j.1365-8711.2001.04852.x

[15]   P. J. Outram, et al., “The 2dF QSO Redshift Survey—XIII. A Measurement of Λ from the Quasi-Stellar Object Power Spectrum, PS(k//, k⊥),” Monthly Notices of the Royal Astronomical Society, Vol. 348, No. 3, 2004, pp. 745-752. doi:10.1111/j.1365-2966.2004.07348.x

[16]   K. Yamamoto, M. Nakamichi, A. Kamino, B. A. Bassett and H. Nishioka, “A Measurement of the Quadrupole Power Spectrum in the Clustering of the 2dF QSO Survey,” Publications of the Astronomical Society of Japan, Vol. 58, 2006, pp. 93-102. 415, No. 3, 2011, pp. 2876-2891. http://pasj.asj.or.jp/v58/n1/580114/58012766.pdf

[17]   C. Blake, et al., “The WiggleZ Dark Energy Survey: The Growth Rate of Cosmic Structure Since Redshift z = 0.9,” Monthly Notices of the Royal Astronomical Society, Vol. 415, No. 3, 2011, pp. 2876-2891.

[18]   A. Taruya, S. Saito and T. Nishimichi, “Forecasting the Cosmological Constraints with Anisotropic Baryon Acoustic Oscillations from Multipole Expansion,” Physical Review D, Vol. 83, No. 10, 2011, Article ID: 103527. doi:10.1103/PhysRevD.83.103527

[19]   K. Yamamoto, T. Sato and G. Hütsi, “Testing General Relativity with the Multipole Spectra of the SDSS Luminous Red Galaxies,” Progress of Theoretical Physics, Vol. 120, No. 3, 2008, pp. 609-614. doi:10.1143/PTP.120.609

[20]   K. Yamamoto, G. Nakamura, G. Huetsi, T. Narikawa and T. Sato, “Constraint on the Cosmological f(R) Model from the Multipole Power Spectrum of the SDSS Luminous Red Galaxy Sample and Prospects for a Future Redshift Survey,” Physical Review D, Vol. 81, No. 10, 2010, Article ID: 103517. doi:10.1103/PhysRevD.81.103517

[21]   K. Yamamoto, B. A. Bassett and H. Nishioka, “Dark Energy Reflections in the Redshift-Space Quadrupole,” Physical Review Letters, Vol. 94, No. 5, 2005, Article ID: 051301. doi:10.1103/PhysRevLett.94.051301

[22]   W. Percival, et al., “Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample,” Monthly Notices of the Royal Astronomical Society, Vol. 401, No. 4, 2010, pp. 2148-2168. doi:10.1111/j.1365-2966.2009.15812.x

[23]   B. A. Reid, et al., “Thick Gas Discs in Faint Dwarf Galaxies,” Monthly Notices of the Royal Astronomical Society, Vol. 404, No. 1, 2010, pp. L60-L63. doi:10.1111/j.1745-3933.2010.00835.x

[24]   W. Percival, et al., “The Shape of the Sloan Digital Sky Survey Data Release 5 Galaxy Power Spectrum,” The Astrophysical Journal, Vol. 657, No. 2, 2007, p. 645. doi:10.1086/510615

[25]   S. Cole, et al., “The 2dF Galaxy Redshift Survey: PowerSpectrum Analysis of the Final Data Set and Cosmological Implications,” Monthly Notices of the Royal Astronomical Society, Vol. 362, No. 2, 2005, pp. 505-534. doi:10.1111/j.1365-2966.2005.09318.x

[26]   T. Sato, G. Hütsi and K. Yamamoto, “Deconvolution of Window Effect in Galaxy Power Spectrum Analysis,” Progress of Theoretical Physics, Vol. 125, No. 1, 2011, pp. 187-197. doi:10.1143/PTP.125.187

[27]   H. A. Feldman, N. Kaiser and J. A. Peacock, “PowerSpectrum Analysis of Three-Dimensional Redshift Surveys,” Astrophysical Journal, Vol. 426, No. 1, 1994, pp. 23-37. doi:10.1086/174036

[28]   K. N. Abazajian, et al., “The Seventh Data Release of the Sloan Digital Sky Survey,” The Astrophysical Journal Supplement Series, Vol. 182, No. 2, 2009, p. 543. doi:10.1088/0067-0049/182/2/543

[29]   G. Hütsi, “Acoustic Oscillations in the SDSS DR4 Luminous Red Galaxy Sample Power Spectrum,” Astronomy & Astrophysics, Vol. 449, No. 3, 2006, pp. 891-902. doi:10.1051/0004-6361:20053939

[30]   G. Hütsi, “Power Spectrum of the SDSS Luminous Red Galaxies: Constraints on Cosmological Parameters,” Astronomy & Astrophysics, Vol. 459, No. 2, 2006, pp. 375-389. doi:10.1051/0004-6361:20065377

[31]   J. M. Bardeen, J. R. Bond, N. Kaiser and A. S. Szalay, “The Statistics of Peaks of Gaussian Random Fields,” The Astrophysical Journal, Vol. 304, 1986, pp. 15-61.

[32]   J. A. Peacock and S. J. Dodds, “Reconstructing the Linear Power Spectrum of Cosmological Mass Fluctuations” Monthly Notices of the Royal Astronomical Society, Vol. 267, 1994, pp. 1020-1034.

 
 
Top