[1] M. Krízek, J. Brandts and L. Somer, “Is Gravitational Aberration Responsible for the Origin of Dark Energy?” In: C. A. Del Valle and D. F. Longoria, Eds., Dark Energy: Theory, Implications and Roles in Cosmology, Nova Science Publishers, Inc., New York, 2012, pp. 29-57.
[2] M. Krízek, “Does a Gravitational Aberration Contribute to the Accelerated Expansion of the Universe?” Communications in Computational Physics, Vol. 5, No. 5, 2009, pp. 1030-1044.
[3] M. Krízek, “Dark Energy and Anthropic Principle,” New Astronomy, Vol. 17, No. 1, 2012, pp. 1-7. doi:10.1016/j.newast.2011.05.003
[4] W. J. Zhang, Z. B. Li and Y. Lei, “Experimental MeasUrements of Growth Patterns on Fossil Corals: Secular Variation in Ancient Earth-Sun Distance,” Chinese Science Bulletin, Vol. 55, No. 35, 2010, pp. 4010-4017. doi:10.1007/s11434-010-4197-x
[5] M. Carrera and D. Giulini, “Influence of Global CosmoLogical Expansion on Local Dynamics and Kinematics,” Reviews of Modern Physics, Vol. 82, No. 1, 2010, pp. 169-208. doi:10.1103/ RevModPhys.82.169
[6] F. I. Cooperstock, V. Faraoni and D. N. Vollick, “The Influence of the Cosmological Expansion on Local Systems,” The Astrophysical Journal, Vol. 503, No. 1, 1998, pp. 61-66. doi:10.1086/305956
[7] S. Perlmutter, G. Aldering, et al., “Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” The Astrophysical Journal, Vol. 517, No. 2, 1999, pp. 565-586. doi:10.1086/307221
[8] A. G. Riess, A. V. Filippenko, et al., “Observational EviDence from Supernovae for an Accelerating Universe and a Cosmological Constant,” The Astrophysical Journal, Vol. 116, No. 3, 1998, pp. 1009-1038. doi:10.1086/300499
[9] M. Krízek and J. Brandts, “Manifestations of Dark Energy in the Dynamics of the Solar System,” In: A. G. Kosovichev, et al., Eds., Proceedings of the IAU Symposium No. 264, Solar and Stellar Variability: Impact on the Earth and Planets, Cambridge University Press, Cambridge, 2010, pp. 410-412.
[10] L. R. Kump, J. F. Kastings and R. G. Crane, “The Earth System,” Prentice Hall, New Jersey, 1999.
[11] K. Tsiganis, R. Gomes, A. Morbidelli and H. F. Levison, “Origin of the Orbital Architecture of the Giant Planets of the Solar System,” Nature, Vol. 435, No. 7041, pp. 459-461. doi:10.1038/nature03539
[12] R. J. Bouwens, et al., “A Candidate Redshift z ≈ 10 Galaxy and Rapid Changes in That Population at an Age of 500 Myr,” Nature, Vol. 469, No. 7331, 2011, pp. 504-507. doi:10.1038/nature09717
[13] I. Trujillo, C. J. Conselice, et al., “Strong Size Evolution of the Most Massive Galaxies Since z ~ 2,” Monthly Notices of the Royal Astronomical Society, Vol. 382, No. 1, 2007, pp. 109-120.
[14] A. Ferré-Mateu and I. Trujillo, “Superdense Massive Galaxies in the Nearby Universe,” In: G. Bruzual and S. Charlot, Eds., Proceedings of the 27th General Assembly of IAU, S262, Kluwer, Dordrecht, 2010, pp. 331-332.
[15] J. van de Sande, et al., “The Stellar Velocity Dispersion of a Compact Massive Galaxy at z = 1.80 Using XShooter Confirmation of the Evolution in the Mass-Size and Mass-Dispersion Relations,” The Astrophysical Journal Letters, Vol. 736, 2011, 7 p.
[16] I. Damjanov, et al., “Red Nuggets at High Redshift: Structural Evolution of Quiescent Galaxies over 10 Gyr of Cosmic History,” The Astrophysical Journal Letters, Vol. 739, No. 2, 2011, p. L44. doi:10.1088/2041-8205/739/2/L44
[17] V. Gonzáles, I. Labbé, R. Bouwens, et al., “Evolution of Galaxy Stellar Mass Functions, Mass Densities, and Mass to Light Ratios from z ~ 7 to z ~ 4,” The Astrophysical Journal Letters, Vol. 735, No. 2, 2011, p. L34. doi:10.1088/2041-8205/735/2/L34
[18] I. Trujillo, “Origin and Fate of the Most Massive Galaxies,” In: M. R. Zapatero, et al., Eds., Highlights of Spanish Astrophysics VI, Proceedings of the 9th Scientific Meeting of the Spanish Astronomical Society, Madrid, 2010, pp. 120-130.
[19] F. Buitrago, et al., “Shaping Massive Galaxies: Their Morphology and Kinematics at z = 1 - 3,” In: M. R. Zapatero, et al., Eds., Highlights of Spanish Astrophysics VI, Proceedings of the 9th Scientific Meeting of the Spanish Astronomical Society, Madrid, 2010, pp. 154-160.
[20] P. J. E. Peebles, “Principles of Physical Cosmology,” Princeton University Press, New Jersey, 1993.
[21] G. Rudnick, et al., “Measuring the Average Evolution of Luminous Galaxies at z < 3: The Rest-Frame Optical Luminosity Density, Spectral Energy Distribution, and Stellar Mass Density,” The Astrophysical Journal, Vol. 650, No. 2, 2006, pp. 624-643. doi:10.1086/507123
[22] A. M. Swinbank, et al., “Intense Star Formation within Resolved Compact Regions in a Galaxy at z = 2.3,” Nature, Vol. 464, No. 7289, 2010, pp. 733-736. doi:10.1038/nature08880
[23] G. A. Shields, “A Brief History of Active Galactic Nuclei,” Publications—Astronomical Society of the Pacific, Vol. 111, No. 760, 1999, pp. 661-678. doi:10.1086/316378
[24] W. E. Harris, “Catalog of Parameters for Milky Way Globular Clusters: The Database,” The Astrophysical Journal, Vol. 112, No. 10, 1996, p. 1487.
[25] P. Kroupa, “Star-Cluster Formation and Evolution,” In: B. G. Elmegreen and J. Palous, Eds., IAU S 237, Triggered Star Formation in a Turbulent ISM, Cambridge University Press, Cambridge, 2007, pp. 230-237.
[26] E. N. Glass, “Gravothermal Catastrophe, an Example,” Physical Review D, Vol. 82, No. 4, 2010, Article ID: 044039. doi:10.1103/PhysRevD.82.044039
[27] J. Southworth, T. C. Hinse, et al., “Physical Properties of the 0.94-Day Period Transiting Planetary System WASP-18,” Cornell University, Ithaca, 2009. arXiv:0910.4875v1.
[28] G. A. Krasinski and V. A. Brumberg, “Secular Increase of Astronomical Unit from Analysis of the Major Planet Motions, and Its Interpretation,” Celestial Mechanics and Dynamical Astronomy, Vol. 90, No. 3-4, 2004, pp. 267-288. doi:10.1007/s10569-004-0633-z
[29] L. Amendola and S. Tsujikawa, “Dark Energy: Theory and Observations,” Cambridge University Press, Cambridge, 2010. doi:10.1017/CBO9780511750823
[30] M. Krízek, “Numerical Experience with the Finite Speed of Gravitational Interaction,” Mathematics and Computers in Simulation, Vol. 50, No. 1, 1999, pp. 237-245. doi:10.1016/S0378-4754(99)00085-3
[31] H. Poincaré, “Sur la Dynamique de l’électron,” Comptes Rendus de l’Académie des Sciences, Vol. 140, 1905, pp. 1504-1508.
[32] S. Carlip, “Aberration and the Speed of Gravity,” Physics Letters A, Vol. 267, No. 2, 2000, pp. 81-87. doi:10.1016/S0375-9601(00)00101-8
[33] C. G. McVittie, “The Mass-Particle in Expanding Universe,” Monthly Notices of the Royal Astronomical Society, Vol. 93, 1933, pp. 325-339.
[34] S. Perlmutter, S. Gabi, et al., “Measurements of the Cosmological Parameters Ω and Λ from the First Seven Supernovae at z ≥ 0.35,” The Astrophysical Journal, Vol. 483, No. 2, 1997, pp. 565-581. doi:10.1086/304265
[35] A. G. Riess, L.-G. Strolger, et al., “New Hubble Space Telescope Discoveries of Type Ia Supernova at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy,” The Astrophysical Journal, Vol. 659, No. 1, 2007, pp. 98-121. doi:10.1086/510378
[36] B. Mashhoon, N. Mobed and D. Singh, “Tidal Dynamics in Cosmological Spacetimes,” Classical and Quantum Gravity, Vol. 24, No. 20, 2007, pp. 5031-5046. doi:10.1088/0264-9381/24/20/008
[37] B. Tinsley, “Accelerating Universe Revisited,” Nature, Vol. 273, 1978, pp. 208-211. doi:10.1038/ 273208a0