IJAA  Vol.3 No.3 , September 2013
Computing Differentially Rotating Neutron Stars Obeying Realistic Equations of State by Using Hartle’s Perturbation Method
Abstract: In this paper, we use the well-known Hartle’s perturbation method in order to compute models of differentially rotating neutron stars obeying realistic equations of state. In our numerical treatment, we keep terms up to third order in the angular velocity. We present indicative numerical results for models satisfying a particular differential rotation law. We emphasize on computing the change in mass owing to this differential rotation law.
Cite this paper: A. Katelouzos and V. Geroyannis, "Computing Differentially Rotating Neutron Stars Obeying Realistic Equations of State by Using Hartle’s Perturbation Method," International Journal of Astronomy and Astrophysics, Vol. 3 No. 3, 2013, pp. 217-226. doi: 10.4236/ijaa.2013.33026.

[1]   V. S. Geroyannis and A. G. Katelouzos, “Numerical Treatment of Hartle’s Perturbation Method for Differentially Rotating Neutron Stars Simulated by GeneralRelativistic Polytropic Models,” International Journal of Modern Physics C, Vol. 19, No. 12, 2008, pp. 1863-1908. doi:10.1142/ S0129183108013370

[2]   J. B. Hartle, “Slowly Rotating Relativistic Stars—I. Equations of Structure,” The Astrophysical Journal, Vol. 150, 1967, pp. 1005-1029. doi:10.1086/149400

[3]   J. B. Hartle and K. S. Thorne, “Slowly Rotating Relativistic Stars—II. Models for Neutron Stars and Supemassive Stars,” The Astrophysical Journal, Vol. 153, 1968, pp. 807-834. doi:10.1086/149707

[4]   J. B. Hartle, “Slowly Rotating Relativistic Stars—IX. Moments of Inertia of Rotationally Distorted Stars,” Astrophysics and Space Science, Vol. 24, No. 2, 1973, pp. 385-405. doi:10.1007/BF02637163

[5]   I. A. Morrison, T. W. Baumgarte and S. L. Shapiro, “Effect of Differential Rotation on the Maximum Mass of Neutron Stars: Realistic Nuclear Equations of State,” The Astrophysical Journal, Vol. 610, No. 2, 2004, pp. 941-947. doi:10.1086/421897

[6]   V. Pandharipande, “Dense Neutron Matter with Realistic Interaction,” Nuclear Physics A, Vol. 174, No. 3, 1971, pp. 641-656. doi:10.1016/0375-9474(71)90413-1

[7]   J. Arponen, “Internal Structure of Neutron Stars,” Nuclear Physics A, Vol. 191, No. 2, 1972, pp. 257-282. doi:10.1016/0375-9474(72)90515-5

[8]   V. Canuto and S. M. Chitre, “Cristallization of Dense NeuTron Stars,” Physical Review D, Vol. 9, No. 6, 1974, pp. 1587-1613. doi:10.1103/PhysRevD.9.1587

[9]   A. Fabrocini, V. Fiks and R. B. Wiringa, “Equation of State for Dense Nucleon Matter,” Physical Review C, Vol. 38, No. 2, 1988, pp. 1010-1037. doi:10.1103/PhysRevC.38.1010

[10]   J. W. Negele and D. Vautherin, “Neutron Star Matter at Sub-Nuclear Densities,” Nuclear Physics A, Vol. 207, No. 2, 1973, pp. 298-320. doi:10.1016/0375-9474(73)90349-7

[11]   R. P. Feynman, N. Metropolis and E. Teller, “Equation of State of Elements Based on the Generalized Fermi-Thomas Theory,” Physical Review, Vol. 75, No. 10, 1949, pp. 1561-1573. doi:10.1103/ PhysRev.75.1561

[12]   G. Baym, C. Pethick and P. Sutherland, “The Ground State of Matter at High Densities: Equation of State and Stellar Modles,” The Astrophysical Journal, Vol. 170, 1971, pp. 299-317. doi:10.1086/ 151216

[13]   G. Baym, H. A. Bethe and C. J. Pethick, “Neutron Star Matter,” Nuclear Physics A, Vol. 175, No. 2, 1971, pp. 225-271. doi:10.1016/0375-9474(71)90281-8

[14]   P. J. Papasotiriou and V. S. Geroyannis, “A SCILAB Program for Computing General-Relativistic Models of RoTating Neutron Stars by Implementing Hartle’s Perturbation Method,” International Journal of Modern Physics C, Vol. 14, No. 3, 2003, pp. 321-350. doi:10.1142/S0129183103004516

[15]   N. Stergioulas, “Rotating Neutron Stars (RNS) Package,” 1992. http://www.gravity. phys.uwm. edu/rns/index.html