[1] Bisswanger, H. (2008) Enzyme kinetics. Principles and Methods. Wiley-VCH Verlag GmbH & Co., Weinheim. doi:10.1002/9783527622023
[2] Dutta, R. (2008) Fundamentals of biochemical engineering. Springer, Berlin. doi:10.1007/978-3-540-77901-8
[3] House, J.E. (2007) Principles of chemical kinetics. Elsevier Inc., Amsterdam.
[4] Leskovac, V. (2004) Comprehensive enzyme kinetics. Kluwer Academic Publishers, Norwell.
[5] Missen, R.W., Mims, C.A. and Saville, B.A. (1999) Introduction to chemical reaction engineering and kinetics. John Wiley & Sons, Inc., Hoboken.
[6] Taylor, K.B. (2002) Enzyme kinetics and mechanisms. Kluwer Academic Publishers, Norwell.
[7] Gaidamauskait, E. (2011) Computational modeling of complex reactions kinetics in biosensors. Doctoral Dissertation, Physical Sciences, Informatics (09P), Vilnius.
[8] Baronas, R., Ivanauskas, F. and Kulys, J. (2009) Mathematical modeling of bio-sensors. Springer-Verlag, Berlin.
[9] Berg, J.M., Tymoczko, J.L. and Stryer, L. (2002) Biochemistry. W. H. Freeman, New York.
[10] Rubinow, S.I. (1975) Introduction to mathematical boilogy. Wiley, New York.
[11] Murray, J.D. (1989) Mathematical biology. Springer, Berlin, 109. doi:10.1007/978-3-662-08539-4_5
[12] Segel, L.A. (1980) Mathematical models in molecular and cellular biology. Cambridge University Press, Cambridge.
[13] Roberts, D.V. (1977) Enzyme kinetics. Cambridge University Press, Cambridge.
[14] Rahamathunissa, G., Manisanar, P., Rajenran, L. and Venugopal, G. (2011) Modeling of nonlinear boundary value problems in enzyme-catalyzed reaction diffusion processes. Journal of Mathematical Chemistry, 49, 457474. doi:10.1007/s10910-010-9752-9
[15] Loghambal, S. and Rajendran, L. (2011) Mathematical modeling in amperometric oxidase enzyme—Membrane electrodes. Journal of Membrane Science, 373, 20-28.
[16] Anitha, S., Subbiah, S., Subramaniam, S. and Rajendran, L. (2011) Analytical solution of amperometric enzymatic reactions based on Homotopy perturbation method. Electrochimica Acta, 56, 3345-3352. doi:10.1016/j.electacta.2011.01.014
[17] Anitha, S., Subbiah, A. and Rajendran, L. (2011) Analytical expression of non-steady-state concentrations and current pertaining to compounds present in the enzyme membrane of biosensor, Journal of Physical Chemistry A, 115, 4299-4306. doi:10.1021/jp200520s
[18] Uma Maheswari, M. and Rajendran, L. (2011) Analytical solution of non-linear enzyme reaction equations arising in mathematical chemistry. Journal of Mathematical Chemistry, 49, 1713-1726. doi:10.1007/s10910-011-9853-0
[19] Meena, A., Eswari, A. and Rajendran, L. (2011) Mathematical modeling of biosensors: Enzyme-substrate Interaction and bio-molecular interaction. In: Serra, P.A., Ed., New Perspectives in Biosensors Technology and Applications, InTech, Rijeka. doi:10.5772/19513
[20] Ghori, Q.K., Ahmed, M. and Siddiqui, A.M. (2007) Application of homotopy perturbation method to squeezing flow of a Newtonian fluid. International Journal of Nonlinear Sciences and Numerical Simulation, 8, 179-184.
[21] Ozis, T. and Yildirim, A. (2007) A comparative study of He’s homotopy perturbation method for determining frequency-amplitude relation of a nonlinear oscillator with discontinuities. International Journal of Nonlinear Sciences and Numerical Simulation, 8, 243-248.
[22] Li, S.J. and Liu, Y.X. (2006) An improved approach to nonlinear dynamical system identification using PID neural networks. International Journal of Nonlinear Sciences and Numerical Simulation, 7, 177-182. doi:10.1515/IJNSNS.2006.7.2.177
[23] Mousa, M.M., Ragab, S.F. and Nturforsch, Z. (2008) Application of the Homotopy perturbation method to linear and nonlinear Schrodinger equations. Zeitschrift für Naturforschung, 63, 140-144.
[24] Margret PonRani, V. and Rajendran, L. (2010) Analytical expression of non steady-state concentration profiles at planar electrode for the CE mechanism. Natural Science, 2, 1318-1325. doi:10.4236/ns.2010.211160
[25] Varadharajan, G. and Rajendran, L. (2011) Analytical solution of coupled non-linear second order reaction differential equations in enzyme kinetics. Natural Science, 3, 459-465.
doi:10.4236/ns.2011.36063
[26] Venugopal, K., Eswari, A. and Rajendran, L. (2011) Mathematical model for steady state current at ppo-modified micro-cylinder biosensors. Journal of Biomedical Science and Engineering, 4, 631-641. doi:10.4236/jbise.2011.49079
[27] Muthukumar, S. and Rajendran, L. (2012) Concentration of species in two species oscillator using Homotophy peturbation method. Global Journal of Theoretical and Applied Mathematics Sciences, 2, 99-108.
[28] He, J.H. (1999) Homotopy perturbation technique. Computer Methods in Applied Mechanics and Engineering, 178, 257-262.
[29] He, J.H. (2003) Homotopy perturbation method: A new non-linear analytical technique. Applied Mathematics and Computation, 135, 73-79. doi:org/10.1016/S0096-3003(01)00312-5
[30] He, J.H. (2003) A simple perturbation approach to Blasius equation. Applied Mathematics and Computation, 140, 217-222. doi:10.1016/S0096-3003(02)00189-3