[1] Bassom, A.P., Ilchmann, A. and Vob, H. (1997) Oxygen diffusion in tissue preparations with Michaelis-Menten kinetics. Journal of Theoretical Biology, 185, 119-127. doi:10.1006/jtbi.1996.0298
[2] Rashevsky, N. (1960) Mathematical biophysics. Dover, New York.
[3] Lin, S.H. (1976) Oxygen diffusion in a spherical cell with non-linear oxygen uptake kinetics. Journal of Theoretical Biology, 60, 449-457. doi:10.1016/0022-5193(76)90071-0
[4] Michaelis, L. and Menten, M. (1913) Die kinetic der inver tinwirkung. Biochemische Zeitschrift, 49, 333-369.
[5] McElwain, D.L.S. (1978) A re-examination of oxygen diffusion in a spherical cell with Michaelis-Menten oxygen uptake kinetics. Journal of Theoretical Biology, 71, 255-263.
doi:10.1016/0022-5193(78)90270-9
[6] Hiltmann, P. and Lory, P. (1983) On oxygen diffusion in a spherical cell with Michaelis-Menten uptake kinetics. Bulletin of Mathematical Biology, 45, 661-664.
[7] Anderson, N. and Arthurs, A.M. (1985) Analytical bound ing functions for diffusion problems with MichaelisMentenkinetics. Bulletin of Mathematical Biology, 47, 145-153.
[8] Asaithambi, N.S. and Garner, J.B. (1989) Point wise solution bounds for a class of singular diffusion problems in physiology. Applied Mathematics and Computation, 30, 215-222. doi:10.1016/0096-3003(89)90053-2
[9] Asaithambi, N.S. and Garner, J.B. (1992) Taylor series solutions of a class of diffusion problems in physiology. Mathematics and Computers in Simulation, 34, 563-570.
doi:10.1016/0378-4754(92)90042-F
[10] Ghori, Q.K., Ahmed, M. and Siddiqui, A.M. (2007) Application of Homotopy perturbation method to squeezing flow of a Newtonian fluid. International Journal of Nonlinear Sciences and Numerical Simulation, 8, 179184. doi:10.1515/IJNSNS.2007.8.2.179
[11] Ozis, T. and Yildirim, A. (2007) A comparative study of He’s Homotopy perturbation method for determining frequency-amplitude relation of a nonlinear oscillator with discontinuities. International Journal of Nonlinear Sciences and Numerical Simulation, 8, 243-248.
doi:10.1515/IJNSNS.2007.8.2.243
[12] Li, S.J. and Liu, X.Y. (2006) An Improved approach to non-linear dynamical system identification using PID neural networks. International Journal of Nonlinear Sciences and Numerical Simulation, 7, 177-182. doi:10.1515/IJNSNS.2006.7.2.177
[13] Mousa, M.M., Ragab, S.F. and Nturforsch, Z. (2008) Application of the Homotopy perturbation method to linear and non-linear Schrodinger equations. Zeitschrift für Naturforschung, 63, 140-144.
[14] He, J.H. (1999) Homotopy perturbation technique. Computer Methods in Applied Mechanics and Engineering, 178, 257-262. doi:10.1016/S0045-7825(99)00018-3
[15] He, J.H. (2003) Homotopy perturbation method: A new non-linear analytical technique. Applied Mathematics and Computation, 135, 73-79. doi:10.1016/S0096-3003(01)00312-5
[16] He, J.H. (2003) A simple perturbation approach to Blasius equation. Applied Mathematics and Computation, 140, 217-222. doi:10.1016/S0096-3003(02)00189-3
[17] Ariel, P.D. (2010) Alternative approaches to construction of Homotopy perturbation algorithms. Nonlinear Science Letters A, 1, 43-52.
[18] Loghambal, S. and Rajendran, L. (2010) Mathematical modeling of diffusion and kinetics of amperometric immobilized enzyme electrodes. Electrochimica Acta, 55, 5230-5238.
doi:10.1016/j.electacta.2010.04.050
[19] Meena, A. and Rajendran, L. (2010) Mathematical modeling of amperometric and potentiometric biosensors and system of non-linear equations—Homotopy perturbation approach. Journal of Electroanalytical Chemistry, 644, 50-59. doi:10.1016/j.jelechem.2010.03.027
[20] Anitha, S., Subbiah, A., Subramaniam, S. and Rajendran, L. (2011) Analytical solution of amperometric enzymatic reactions based on Homotopy perturbation method. Electrochimica Acta, 56, 3345-3352. doi:10.1016/j.electacta.2011.01.014
[21] Ananthaswamy, V. and Rajendran, L. (2012) Analytical solution of two-point non-linear boundary value problems in a porous catalyst particles. International Journal of Mathematical Archive, 3, 810-821.
[22] Ananthaswamy, V. and Rajendran, L. (2012) Analytical solutions of some two-point non-linear elliptic boundary value problems. Applied Mathematics, 3, 2012, 10441058. doi:10.4236/am.2012.39154
[23] Ananthaswamy, V. and Rajendran, L. (2012) Analytical solution of non-isothermal diffusion-reaction processes and effectiveness factors. ISRN Physical Chemistry, 2012, 1-14.
[24] Rajendran, L. and Anitha, S. (2013) Comments on analytical solution of amperometric enzymatic reactions based on Homotopy perturbation method” by Ji-Huan He, LuFeng Mo. Electrochimica Acta, 102, 474-476. doi:10.1016/j.electacta.2013.03.163